

Greater Cambridge Partnership

CAMBOURNE TO CAMBRIDGE

Environmental Statement Technical Report 11, Appendix TR11.1: Mott MacDonald Geotechnical and Geo-environmental Preliminary Risk Assessment

Cambourne to Cambridge

Geotechnical and Geo-environmental Preliminary Risk Assessment

5 May 2020

Mott MacDonald East Wing 69-75 Thorpe Road Norwich NR1 1UA United Kingdom

T +44 (0)1603 767530 mottmac.com

Greater Cambridge Partnership Shire Hall Cambridge CB3 0AP

Cambourne to Cambridge

Geotechnical and Geo-environmental Preliminary Risk Assessment

5 May 2020

Issue and Revision Record

Revision	Date	Originator	Checker	Approver	Description
A	05/05/2020	P Fitt E Jeffrey	M Gipson J Southall A Jackson	J Baker	Draft for comment

Document reference: 392438-MMD-HWA-XX-RP-GE-0001

Information class: Standard

This document is issued for the party which commissioned it and for specific purposes connected with the abovecaptioned project only. It should not be relied upon by any other party or used for any other purpose.

We accept no responsibility for the consequences of this document being relied upon by any other party, or being used for any other purpose, or containing any error or omission which is due to an error or omission in data supplied to us by other parties.

This document contains confidential information and proprietary intellectual property. It should not be shown to other parties without consent from us and from the party which commissioned it.

Contents

Exe	ecutive	e summa	ıry	1
1	Intro	oduction		3
	1.1	Backgro	ound	3
	1.2	Propos	ed Works	3
	1.3	Objectiv	ves	4
	1.4	Scope	of Works	4
	1.5	Report	Layout	4
	1.6	Source	s of Information	5
2	Sch	eme Des	scription	6
	2.1	Overall	Site Description	6
	2.2	Field St	tudies	8
		2.2.1	Site Walkover	8
		2.2.2	Other Field Studies	8
	2.3	Overvie	ew of Route Options	8
		2.3.1	Route Zone 1 (Ch. 0 – 2000)	11
		2.3.2	Route Zone 2 (Ch 2000 – 2750)	12
		2.3.3	Route Zone 3 (Ch 2750 – 5700)	14
		2.3.4	Route Zone 4 (Ch 5700 – 8670)	15
		2.3.5	Route Zone 5 (Ch 8670 – 9450)	17
		2.3.6	Route Zone 6 (Ch 9450 – 11400)	19
		2.3.7	Route Zone 7 (Park and Ride)	20
		2.3.8	Route Zone 8 (Ch 0 – 2250)	21
3	Ove	rview of	Entire Study Area	23
	3.1	Publish	ed Geology	23
		3.1.1	Artificial Ground	23
		3.1.2	Superficial Geology	23
		3.1.3	Bedrock Geology	23
		3.1.4	Structural Geology	24
	3.2	Hydrog	eology and Hydrology	27
		3.2.1	Hydrogeology	27
		3.2.2	Hydrology	27
	3.3	Radon		28
	3.4	Unexplo	28	
	3.5	Environ	iment	28
	3.6	Archae	ology and Heritage	28
4	Rou	te Zone	Desk Study Findings	29

4.1	Zone 1		29
	4.1.1	Site Geology	29
	4.1.2	Hydrogeology and Hydrology	30
	4.1.3	Environmental Records	31
	4.1.4	Utilities	36
4.2	Zone 2		37
	4.2.1	Site Geology	37
	4.2.2	Hydrogeology and Hydrology	38
	4.2.3	Environmental Records	38
	4.2.4	Utilities	43
4.3	Zone 3		44
	4.3.1	Site Geology	44
	4.3.2	Hydrogeology and Hydrology	45
	4.3.3	Environmental Records	45
	4.3.4	Utilities	53
4.4	Zone 4		54
	4.4.1	Site Geology	54
	4.4.2	Hydrogeology and Hydrology	55
	4.4.3	Environmental Records	55
	4.4.4	Utilities	62
4.5	Zone 5		63
	4.5.1	Site Geology	63
	4.5.2	Hydrogeology and Hydrology	64
	4.5.3	Environmental Records	64
	4.5.4	Utilities	69
4.6	Zone 6		70
	4.6.1	Site Geology	70
	4.6.2	Hydrogeology and Hydrology	71
	4.6.3	Environmental Records	72
	4.6.4	Utilities	79
4.7	Zone 7 -	- Park and Ride – Scotland Road	80
	4.7.1	Site Geology	80
	4.7.2	Hydrogeology and Hydrology	80
	4.7.3	Environmental Records	81
	4.7.4	Utilities	87
4.8	Zone 8 -	- NMU Route (Scotland Road Roundabout to Dry Drayton)	88
	4.8.1	Site Geology	88
	4.8.2	Hydrogeology and Hydrology	88
	4.8.3	Environmental Records	89
	4.8.4	Utilities	96
4.9	Summar	y of Route Option Desk Study Findings	97
	4.9.1	Site Geology	97
	4.9.2	Hydrogeology and Hydrology	97
	4.9.3	Environmental Records	99

5	Geo	technical Risk Assessment	101			
	5.1	Preliminary Geotechnical Assessment	101			
		5.1.1 Artificial Ground	102			
		5.1.2 Oadby Member (Wolston Glacigenic Formation)	102			
		5.1.3 Kimmeridge Clay	103			
		5.1.4 Woburn Sands Formation	103			
		5.1.5 Gault Formation	103			
		5.1.6 West Melbury Marly Chalk Formation	103			
		5.1.7 Groundwater	104			
		5.1.8 Drainage	104			
	5.2	Geotechnical Hazards	105			
	5.3	Geotechnical Risks Associated with Earthworks	107			
	5.4	Geotechnical Risks Associated with Structures	111			
	5.5	Additional Geotechnical Risks	115			
6	Con	taminated Land Qualitative Risk Assessment	116			
	61	Environmental Protection Act 1990 Part 11A	116			
	6.2	Planning Policy Context	117			
	0.2	6.2.1 National Planning Policy Guidance	117			
	63	Qualitative Risk Assessment Framework	118			
	64	Conceptual Model	118			
	0.1	6 4 1 Hazard Identification	118			
		6.4.2 Risk Estimation and Risk Evaluation	118			
		6 4 3 Process of Developing Conceptual Model	118			
	6.5	Preliminary Qualitative Risk Assessment	119			
	0.0	6.5.1 Sources	119			
		6.5.2 Pathways	120			
		6.5.3 Receptors	121			
7	Con	clusions and Recommendations	123			
1	74		120			
	7.1	Geotechnical and Geo-environmental Summary	123			
		7.1.1 Recommendations	129			
8	Refe	erences	130			
Anr	pendic	es	131			
141	Jerraio		101			
Α.	Ove	rall Scheme Drawings	132			
B.	Envi	ironmental Record Drawings	133			
0	1	des ante Energias als Dans ant	404			
U.	Landmark Envirocheck Report 134					

D.	Historical BGS Boreholes	135
E.	Preliminary UXO Risk Assessment Report	136
F.	Geotechnical Risk Register	137
G.	Contaminated Land Risk Assessments and Conceptual Site Models	146
H.	Contaminated Land Risk Methodology	174
I.	Limitations	177

Executive summary

Mott MacDonald has been commissioned by Greater Cambridge Partnership (GCP) to undertake a Geotechnical and Geo-environmental Preliminary Risk Assessment for the Cambourne to Cambridge Better Public Transport Project (C2C).

GCP are proposing to construct infrastructure required to enable a Public Transport Route (PTR) service to operate between Cambourne to Cambridge. The C2C scheme aims to provide a dedicated public transport corridor for people travelling to Cambridge from towns and villages to its west, while providing additional transport capacity for developments proposed and planned within Greater Cambridge to alleviate the impact of future growth along the corridor. The scheme comprises of three key elements including a new public transport route or bus lanes/priority measures between Cambourne and Cambridge, a new Park and Ride site off of the A428 / A1303, and new cycling/walking facilities along the route.

1

GCP will be applying for a Transport and Works Act Order (TWAO), which would provide the relevant powers for the construction, maintenance and operation of the C2C Scheme.

Historic maps indicate that the majority of the study area has been used as agricultural land with the development of several villages, Bourn Airfield, and major roads (A428, M11) present adjacent to or bisecting the route.

No Artificial Ground is recorded on the BGS mapping at the site or within the immediate surrounding area. BGS mapping only indicates artificial deposits where they occur at thicknesses greater than 2.5m. However, Artificial Ground may be present within the site and surrounding area associated with historic mining / extractive industry sites, and the industrial / infrastructure development associated with road construction present at the site. It is highly likely to be present below the footprint of Bourn airfield towards the western end of the scheme.

Previous ground investigations and geological records indicate that the superficial geology underlying the majority of the site comprises the glacial till of the Oadby Member, this is usually 20m thick or more and thins to the east before petering out to the west of the village of Coton.

The bedrock geology varies across the site from west to east. The Kimmeridge Clay Formation is shown as present at the very western extremity of the route whilst the Woburn Sands Formation is recorded east of this below the footprint of the airfield and is replaced by the Gault Formation in the region of Highfields Road and underlies the remainder of the proposed route, this is recorded as potentially being up to c.39m thick. One of a few outliers of the West Melbury Marly Chalk Formation is present above the Gault Formation near Coton, with the unit indicated to only be up to c. 12m in thickness, which is physically separate to the main body of Chalk present beyond the western end of the proposed scheme.

There are a number of potential geotechnical hazards associated with the geological units that are likely to be present below the site. However, this report concludes that most of the risk associated with these is low to moderate, the most significant risks of which are likely to be associated with areas of key structures and/or significant earthworks. A summary of the high-level geotechnical risks based on the proposed scheme is provided below.

Superficial Deposits of the Oadby Member are likely to be encountered across the majority of the site. This unit is likely to be moisture sensitive and ground conditions may deteriorate if the material becomes wet. The deposit is likely to be variable which may lead to differential / long-term consolidation settlement of embankments and may contain cobbles / boulders which may

pose as obstructions to structures. Periglacial features such as shallow shear-surfaces and perched water in granular beds may be encountered which could lead to instability of slopes.

The West Melbury Marly Chalk Formation is likely to be susceptible to frost, and pavement over this material will need to be founded below the frost susceptible zone. The Chalk may have a variable weathering zone, contain natural dissolution and man-made cavities which could lead to subsidence, and the potential presence of low strength, compressible material at foundation level. It is possible that at its boundary with the Oadby Member, this may have be reworked by glacial processes resulting in variable, low strength and potentially compressible material.

The Gault Formation is likely to be encountered east of Coton. This deposit may have a variable strength / weathering profile which may lead to differential settlement between elements, and long-term consolidation settlement of embankments. The unit is susceptible to shrink/swell and may contain periglacial shallow shear surfaces, which may lead to instability. Obstructions to deep foundation construction such as limestone bands may also be present.

The Preliminary Unexploded Ordnance (UXO) Threat & Risk Assessment indicates that UXO encounter is likely at the western extent of the scheme between Cambourne and Childerley Lodge. East of Childerley Lodge, UXO encounter is recorded as unlikely. A detailed assessment of UXO has not yet been undertaken however, and it is recommended that this is completed prior to any intrusive works in the western area of the scheme.

The most significant sources of contamination were identified to have a potential impact on the western to central area of the scheme, with potentially contaminated made ground associated with Bourn Airfield, and an active fuel station with underground tanks (to the north-east of Bourn Airfield). Other potential minor sources were identified, associated with contemporary trade, infrastructure development, agricultural practices and historical/current land use.

The risk assessment identified a very low to moderate risk to human health and controlled waters. This is primarily due to the lack of significant on-site contamination sources along the majority of the scheme. The increase in hardstanding across the route will act as a barrier between the soil and site users, as well as reducing infiltration and migration of contaminants to the sensitive groundwater receptors. There are numerous land drains and surface water features along the route, however, that may be impacted via increased surface run-off.

The following recommendations have been made to help further assess geotechnical and contaminated land risks:

- A ground investigation should be designed to identify variability of the ground and groundwater conditions at the scheme location. Geotechnical and geo-environmental testing should also be undertaken to assess variations in the geotechnical properties of the units likely to be encountered at the scheme and the levels of contamination present;
- It is recommended that a natural and man-made cavity search is completed for the site based on a number of man-made (and potential presence of natural cavities) recorded in close proximity to the site;
- If material re-use is proposed, this should be done under an appropriate regulatory regime (e.g. waste exemption, environmental permit or a Materials Management Plan). If disposal of excess material is required, this should be discussed with a waste carrier; and,
- Carry out an Agricultural Land Classification (ALC) and Soil Resource Survey (SRS) in order to understand the impact of works upon the current Topsoil resource.

The above should be read in conjunction with the specific recommendations made in the relevant geotechnical and contaminated land sections of this report.

1 Introduction

1.1 Background

Greater Cambridge Partnership (GCP) are proposing to construct infrastructure required to enable a Public Transport Route (PTR) service to operate between Cambourne to Cambridge. This scheme is known as the Cambourne to Cambridge Better Public Transport Project (C2C).

The scheme aims to provide a dedicated public transport corridor for people travelling to Cambridge from towns and villages to its west, while providing additional transport capacity for developments proposed and planned within Greater Cambridge to alleviate the impact of future growth along the corridor.

The scheme comprises of three key elements including a new busway or bus lanes/priority measures between Cambourne and Cambridge, a new Park and Ride site off of the A428 / A1303, and new cycling/walking facilities along the route.

GCP will be applying for a Transport and Works Act Order (TWAO), which would provide the relevant powers for the construction, maintenance and operation of the C2C Scheme.

1.2 Proposed Works

The currently proposed works for the scheme are listed below. It should be noted that the exact route alignment is yet to be confirmed, however the below represents the anticipated proposed works based on the Outline Business Case (OBC) alignment. Should these change, this section should be updated accordingly:

- A new Public Transport Route (PTR) c. 7.3m wide between Cambourne and Cambridge, the majority of which is to be an off road segregated route, utilising existing roads along Charles Babbage road and Adam's Road on the outskirts of Cambridge;
- Earthworks to form the PTR between Cambourne and Cambridge, including cuttings / embankments along the PTR alignment.
- A bridge crossing over the M11 in the east of the scheme with associated earthworks;
- Potential retaining structures including a retaining wall up to c. 3m high north of Childerley Lodge, and a potential retaining structure between St Neots Road / A428 north of Long Road;
- Potential modifications to existing ponds present along the scheme;
- Extension of an existing culvert west of Scotland Road Roundabout to accommodate the route;
- A new Park and Ride site at Scotland Road, off of the A428 / A1303 and associated ancillary infrastructure;
- Construction of a new non-motorised route for cycling/walking facilities, running adjacent to
 or in close proximity of the PTR, as well as a proposed non-motorised route between
 Scotland Road Roundabout and Dry Drayton; and,
- Ancillary works including signal controlled junctions, junction upgrades, tie-ins to existing infrastructure, lighting and landscaping.

1.3 **Objectives**

The purpose of this report is to summarise available ground related information for the site and identify potential geotechnical and/or geo-environmental hazards which may place a constraint upon the proposed development, in support of the TWAO application.

These hazards may pose a risk to the proposed development itself, human health, or the environment. By identifying these risks at an early stage, opportunity is provided to consider them whilst undertaking the optioneering process and thereby minimise or take into account abnormal development costs associated with ground related risks. This report will also help inform planned intrusive works, as well as beginning to understand the site with respect to pavement and foundation requirements.

Recommendations are provided at the end of this report to aid management of the identified ground related risks.

1.4 Scope of Works

The scope of work associated with this report includes:

- A review of readily available environmental records including those contained within an Envirocheck report for the site, and those from the British Geological Survey (BGS);
- Review of available historical maps of the area;
- A review of available ground investigation data local to the site;
- Preparation of a geotechnical and geo-environmental preliminary risk assessment providing conclusions on likely ground related risks; and,
- Recommendations for the proposed works based on a high-level review of likely geotechnical risks along the route.

1.5 Report Layout

Due to the size of the overall scheme / route alignment and the Park and Ride, the report has been laid out in the following format:

- Section 2 Scheme Description: In this section the overall scheme footprint is described, and the location of the proposed Park and Ride site. The use of route zones is detailed, with each of the route zones described in Section 2. The proposed key earthworks and structures are outlined in this section.
- Section 3 Overview of Entire Study Area: The geography, geology, hydrogeology and hydrology, are presented for the overall scheme footprint, along with the risk of radon and UXO.
- Section 4 Route Zone Desk Study Findings: The geology, hydrogeology, hydrology, environmental records and historical development are presented for each of the route zones. The route has been split into zones to cover areas of differing geology or the location of key structures. To present the geotechnical and geo-environmental information appropriately, these zones are discussed separately. Further details are provided in Section 2. A summary of the route zones is then presented at the end of the section to allow comparison along the route in terms of indicated geology, hydrogeology, hydrology and environmental records;
- Section 5 Geotechnical Risk Assessment: This section presents the geotechnical risks of the likely anticipated strata across the site, as well as potential risks associated with structures and earthworks within each of the Zones.

- Section 6 Contaminated Land Qualitative Risk Assessment: The qualitative risk assessment presented assesses potential contaminant sources, pathways and receptors for each of the Route Zones.
- Section 7 Conclusions and Recommendations: The geotechnical and geo-environmental findings of the report are summarised, along with a summary of the initial engineering proposed for the scheme. A series of recommendations are then presented for the proposed scheme.

1.6 Sources of Information

The information in this report has been taken from the following sources of information, which are listed in Section 8 of this report:

- Landmark PLC (Envirocheck Report), Ref. 236185287_1_1, February 2020 Referred to herein as Envirocheck Report 1.
- Landmark PLC (Envirocheck Report), Ref. 236185392_1_1, February 2020 Referred to herein as Envirocheck Report 2.
- British Geological survey Lexicon of Named Rock Units, accessed from <u>http://www.bgs.ac.uk/lexicon/</u> on 17/03/2020;
- British Geological Survey Geology of Britain Viewer, accessed from <u>http://www.bgs.ac.uk/discoveringGeology/geologyOfBritain/viewer.html</u> on 17/03/20;
- British Geological Survey Borehole Scans Database, accessed from <u>http://www.bgs.ac.uk/data/boreholescans/home.html on 01/05/2019;</u>
- British Geological Survey, 1975, Huntingdon. England and Wales Sheet 187, Drift Geology.
- British Geological Survey, 1984, 1:100,000 Hydrogeological Map of the Area Between Cambridge and Maidenhead Sheet 14.
- British Geological Survey, 1981, Cambridge. England and Wales Sheet 188, Solid and Drift Geology.
- Department for Environment Industry Profiles (1995);
- Environment Agency Technical Guidance on Special Sites (2001);
- Worssam, B. C., Taylor, J. H., 1969. Geology of the country around Cambridge. Explanation of Sheet 188.
- Edmonds, E. A., Dinham, C. H., Casey, R., Day, J.B.W., 1965. Geology of the country around Huntingdon and Biggleswade. Explanation of Sheets 187 and 204.
- 6 Alpha Associates, Preliminary Unexploded Ordnance (UXO) Threat Assessment, Project Number 8028, March 2020.

It should be noted that a preliminary geotechnical assessment was undertaken by Capita on behalf of Skanska in 2018:

 Cambourne to Cambridge Guided Busway, Preliminary Geotechnical Route Assessment, Capita, June 2018.

The report listed above provides a high-level assessment of the likely anticipated geology and geotechnical risks across the broad area of the site, and presents a preliminary geotechnical risk register for the scheme proposed at the time. The Capita report has not been used in the production of this report and has been referenced for completeness.

2 Scheme Description

2.1 Overall Site Description

The main proposed route runs between Cambourne and Cambridge, Cambridgeshire, and comprises a roughly east to west orientated alignment approximately 11.5km long. An indicative site location plan is provided in Figure 2.1. Several villages are located adjacent to the south of the site including Highfields Caldecote, Hardwick and Coton, with the city of Cambridge and its commercial/ residential areas present towards the eastern ends of the site.

Immediately east of Cambourne the site passes around the perimeter of Bourn Airfield and is orientated east to west broadly parallel to the south of the A428 along c. half of its length, with several key features such as balancing ponds, a culvert and some surface water features including drains adjacent to it. Towards the eastern end of the site, the M11 crosses the site in a north to south orientation.

Several land drains and brooks drain the area surrounding the site, with Callow Brook crossing the site north of Hardwick in between St Neots Road and the A428, orientated north-east. A series of land drains which appear to lead to Bin Brook, located c. 450m south of the site, are located to the east of Hardwick, and two springs are also recorded in Coton (one within the town and another immediately west of Whitwell Farm). Bin Brook is orientated broadly east to west between Hardwick and Cambridge, where it joins the River Cam.

Within the surrounding area, agricultural land forms the dominant land-use to the north and south, with occasional patches/strips of woodland and plantations, and Coton Countryside Reserve present west of the M11. The town of Cambourne extends to the west of the site, and the City of Cambridge to the eastern end of the site, forming the wider areas to the east.

A full site topographic survey has not yet been undertaken. However, a review of the topography along the route has been completed based on available ordnance survey mapping. Following receipt of the topographic survey results, this section should be updated.

The western half of the site sits between c. 60 - 75m AOD, sloping very gently to the east, and forms a slightly elevated area. Ground levels slope more steeply east of Hardwick in the centre of the site from c. 60 to 30m AOD, where the landscape is dissected by a small stream valley of Bin Brook. East of this valley, ground levels decrease gently toward the eastern site boundary at approximately 10 - 15m AOD within the city of Cambridge.

The proposed Park and Ride site is located within an agricultural field adjacent to Scotland Road Roundabout, and a spur circa. 2.5km long of the proposed NMU route runs adjacent to Scotland Road orientated north/north-east towards Dry Drayton, predominantly along the perimeter of agricultural fields and past some residential houses and a business park.

Ground levels also decrease to the north / north-east from c. 60m AOD at Scotland Road Roundabout at the proposed Park and Ride, to c. 45m AOD at Dry Drayton at the northern end of the proposed NMU route.

392438-MMD-HWA-XX-RP-GE-0001 | 5 May 2020

2.2 Field Studies

2.2.1 Site Walkover

A site walkover has yet to be undertaken due to restrictions in place at present as a result of COVID-19. A walkover is however planned and the report will be finalised when a walkover is complete.

2.2.2 Other Field Studies

Several environmental, aboricultural and archaeological surveys have been completed at the site between c. 2017 - 2019, with a summary provided within the following technical note. It should be noted that several surveys such as Hedgerow surveys are also yet to be undertaken:

 392438-MMD-ENV-XX-TN-EN-0010, Cambourne to Cambridge, GCP C2C Survey Technical Note, November 2019.

2.3 Overview of Route Options

The review contained in this report assesses the alignment recommended in the OBC. It is understood that route options in some areas of the site may be further developed at a later stage. Should other options be developed this report should be updated accordingly.

Due to presence of key structures and varying geology across the route, and to present the geotechnical and geo-environmental information appropriately, these routes have been split into zones and are presented in Table 2.1. An overall sketch of the site is presented in Figure 2.1, and the below sections provide a description of each of the route zones and are also presented in Figure 2.2.

The approximate chainages referred to in the below sections have been assessed based on the Outline Business Case alignment from west to east. A chainage has also been provided based on the current information available for the proposed NMU route between Scotland Road Roundabout and Dry Drayton. These chainages have been used to inform description of features along the route and assist in dividing the site into a series of route zones.

The below section provides:

- A description of each of the Route Zones, along with the start and end chainage and associated drawings.
- Assessment of the anticipated earthworks and key structures present in each of the route zones. The approximate lengths of earthworks have been derived based on the existing topographical survey data and/or LIDAR data for the site provided in the drawings listed below. It should be noted that at the time of writing not all survey information has been received and the vertical alignments are still to be confirmed, therefore the approximate height of earthworks should be treated with caution and this report should be updated upon receipt of the full site topographic information and to capture any development of the design drawings. Areas where no topographic information is currently available is detailed in the following drawings within Appendix A:
 - 392438-MMD-XX-C-SK-0020 and 0021. Mott MacDonald Limited, Cambourne To Cambridge (C2C), Topographic Risk Plan, March 2020.
- An assessment has also been undertaken to determine whether any further retaining features could be required due to the width requirement for earthworks and space restrictions along some areas of the route. This has been assessed on the basis of an assumed requirement for slope gradient of 1:3 for embankments and cuttings.

It should also be noted that the route is currently being designed, and therefore the below zones and/or routes assessed in this report may be subject to change throughout the design process.

Zone	Start Chainage*	End Chainage*	Brief Description	Drawings
Zone 1	Ch 0	Ch 2000	Cambourne to Wellington Way	392438-MMD-00-XX-DR-C-025
				392438-MMD-TC-TR-M2-CV-0001
Zone 2	Ch 2000	Ch 2750	Wellington Way and Childerley	392438-MMD-00-XX-DR-C-025
			Lodge	392438-MMD-TC-TR-M2-CV-0001
Zone 3	Ch 2750	Ch 5700	Childerley Gate to Long Road /	392438-MMD-00-XX-DR-C-026 - 27
			Madingley Mulch Roundabout	392438-MMD-TC-TR-M2-CV-0001
Zone 4	Ch 5700	Ch 8670	Long Road / Madingley Mulch	392438-MMD-00-XX-DR-C-027 – 28
			Roundabout to Coton Orchard	392438-MMD-TC-TR-M2-CV-0001
Zone 5	Ch 8670	Ch 9450	Coton Orchard to Ada Lovelace Road	392438-MMD-00-XX-DR-C-028
Zone 6	Ch 9450	Ch 11400	Ada Lovelace Road to Adam's Road	392438-MMD-00-XX-DR-C-028 - 29
				392438-MMD-TC-TR-M2-CV-0001
Zone 7	N/A – Park	N/A – Park	Agricultural field northeast of	At the time of writing, no drawing is
	site			updated upon its receipt
Zone 8	Ch 0	Ch 2256	Scotland Farm to Dry Drayton	At the time of writing, no drawing is currently available. This should be updated upon its receipt.

5

* It should be noted that the chainages presented are approximate only and should not be relied upon.

Figure 2.2: Indicative Site Location Plan and Route Zones

Source: Contains OS data © Crown copyright and database right (2019)

2.3.1 Route Zone 1 (Ch. 0 – 2000)

Zone 1 is positioned at the western end of the scheme and forms a c. 2000m long route between Sterling Way in Cambourne to Wellington Way, adjacent to Bourn Roundabout. Along Sterling Way, the route is orientated east to west before bisecting Broadway at Ch 400. The route then passes around the perimeter of the Bourn Airfield site through land adjacent to taxiways, bearing north, and then east (from Ch 400 – 2000), to run broadly parallel to the A428 which is present c. 20m north from Ch 800. The route crosses two disused taxiways associated with the airfield between approximate Ch. 730 – 810, and 1785 – 1880. This zone ends at the approximate location of Wellington Way at Ch. 2000, a road which connects Bourn Works (present c. 200m south) to Bourn Roundabout to the east (Zone 2).

A location plan for Zone 1 is presented in Figure 2.3.

It should be noted that as part of the South Cambridgeshire Local Plan (2018), Bourn Airfield is a Strategic Site which has been outlined for development of c. 3500 new dwellings. An existing planning application has been submitted, and the South Cambridgeshire District Council has developed a Supplementary Planning Document, with further consultation ongoing.

Figure 2.3: Location Plan – Zone 1

Source: Contains OS data © Crown copyright and database right (2019)

2.3.1.1 Route Zone 1 Proposed Earthworks

Potential earthworks over c. 0.5m in height or depth are summarised below.

Within Zone 1, the majority of the route appears to be in cut which is generally less than 1.5m and is locally shown to be up to 2.5m between approximate Ch 1860 – 2000. It should be noted that limited topographic information is available between Ch 1860 – 2000, and the current assessment of earthworks is based on lower resolution LiDAR data.

Areas of embankment are present at the western end of the Zone and along the northern side of Bourn Airfield, and are shown to be between approximately 0.5 - 1.5m in height.

The below table summarises the proposed earthworks in this zone. This section should be updated upon receipt of the site-specific topographic information.

Earthwork Type	Maximum Height / depth (m)*	Length (m)*	Start Chainage*	End Chainage*	Underlying Geology
Embankment	1.0	100	100	250	Oadby Member
	1.5	320	980	1300	
Cutting	1.0	150	250	400	Oadby Member
	1.5	400	480	880	
	1.5	550	1300	1850	
	2.5	150	1850	2000	
At Grade	-	150	0	150	Oadby Member
	-	80	400	480	
	-	100	880	980	

Table 2.2: Summary of Proposed Earthworks – Zone 1

*Dimensions and Chainages are approximate

2.3.1.2 Route Zone 1 Proposed Structures

It is understood that no significant structures are proposed within this Zone.

2.3.2 Route Zone 2 (Ch 2000 – 2750)

Zone 2 is c. 750m in length and is located along the north-east boundary of Bourn Airfield, between Wellington Way and the outskirts of Highfields Caldecote, to the east of Childerley Lodge. The route zone commences at Ch 2000 adjacent to Wellington Way in an agricultural field heading roughly east, before bearing north-east from Ch 2150 and crosses Wellington Way at approximate Ch 2190, it then passes through a field, over a drain before meeting and crossing St Neots Road (which is present upon an embankment) at approximate Ch 2280 – 2290. East of this, the OBC route trends east past Childerley Lodge and runs broadly east to west parallel to the south of the A428 (Ch 2350 – 2750). A location plan for Zone 2 is presented in Figure 2.4.

Source: Contains OS data © Crown copyright and database right (2019)

2.3.2.1 Route Zone 2 Proposed Earthworks

Potential earthworks over c. 0.5m in height or depth are summarised below.

Within the OBC alignment, an embankment up to c. 4.5m high would be required for the proposed PTR to meet and cross St Neots Road, which is present on an existing embankment.

For the remainder of this zone, cuttings are present and are shown to be between up to 1m, and locally up to 3m deep along the south side of the A428. Further cut may be required to form a potential retaining structure along the north of Childerley Lodge, this is discussed in section 2.3.2.2 below.

The below table summarises the proposed earthworks in this zone.

Earthwork Type	Maximum Height (m)*	Length (m)*	Start Chainage*	End Chainage*	Underlying Geology
Embankment	4.5	380	2000	2380	Oadby Member
Cutting	3.0	370	2380	2750	Oadby Member

Table 2.3: Summary of Proposed Earthworks – Zone 2

*Dimensions and Chainages are approximate

2.3.2.2 Route Zone 2 Proposed Structures

The OBC alignment may require a retaining structure up to c. 3m high to be constructed between approximate Ch. 2380 – 2520 due to restricted space where Childerley Lodge is located adjacent the A428 due to restricted space.

Based on current topographic information, a cutting up to a maximum of c. 3m deep may be required between approximate Ch 2600 - 2750, where the proposed alignment runs adjacent to the south of the A428. However, it is possible that a retaining structure may be required within this area as the design could encroach onto the side slopes of existing earthworks associated with the A428.

2.3.3 Route Zone 3 (Ch 2750 – 5700)

This route zone commences east of Bourn Bridge Roundabout where the PTR is runs c. 30m south of the A428 from Ch. 2750. From Ch 2920, the proposed route passes through areas of semi-mature trees/vegetation adjacent to the A428 until it reaches Scotland Roundabout. It passes adjacent to the north of an existing balancing pond (Ch 3070 - 3190), and over an existing culvert (approximate Ch 3450).

The OBC alignment approaches Scotland Road Roundabout (Ch 3720) and the PTR crosses directly through the roundabout in a south-easterly direction. The PTR route then bears east running c. 25m north of St Neots Road, passing along the southern side of an existing drainage pond at Ch 4000, which connects to Callow Brook via a culvert at approximate Ch 4200 (c. 50m north of the route), and then crosses a drain feature at Ch 4350. From approximate Ch 4350 the alignment runs on a strip of land currently populated by trees / vegetation between St Neots Road and the A428, with limited room either side of it until the end of this Zone at approximate Ch. 5700, west of Madingley Mulch Roundabout.

West of Scotland Road Roundabout the NMU separates from the PTR and bears south before joining St Neots Road. The NMU is shown to run adjacent to St Neots Road for the remainder of this zone.

A location plan for Zone 3 is presented in Figure 2.5.

Figure 2.5: Location Plan – Zone 3

Source: Contains OS data © Crown copyright and database right (2019)

2.3.3.1 Route Zone 3 Proposed Earthworks

Proposed earthworks over c. 0.5m in height or depth are summarised below.

Within Zone 3, the majority of the route is shown to comprise of cut or fill of up to c. 1.5m in height. However, where the route passes to the north of an existing balancing pond at approximate Ch. 3050 – 3200 embankments up to c. 2.5m may be required. Significant cut is also currently anticipated on approach to Scotland Road Roundabout within the OBC alignment. The below table summarises the proposed earthworks in this zone.

Earthwork Type	Maximum Height (m)*	Length (m)*	Start Chainage*	End Chainage*	Underlying Geology
Embankment	2.5	700	2750	3450	Oadby Member
	1.0	10	3810	3820	
	1.0	10	4290	4300	
	1.5	1100	4400	5500	
Cutting	2.5	150	3600	3750	Oadby Member
	2.0	430	3860	4290	
	1.0	100	4300	4400	
	2.5	150	5550	5700	
At Grade	-	40	3750	3810	Oadby Member
		40	3820	3860	
		50	5500	5550	

Table 2.4: Summary of Proposed Earthworks – Zone 3

*Dimensions and Chainages are approximate

2.3.3.2 Route Zone 3 Proposed Structures

It is understood that no significant structures are currently proposed within this Zone. However, where areas of significant embankment/cut up to c. 2.5 are recorded, a structure could potentially be required e.g. between approximate Ch 2700 - 2850.

A potential retaining structure may be also required between Ch 5700 – 6100 where the required height of embankment / cut increases between St Neot's Road and the A428.

2.3.4 Route Zone 4 (Ch 5700 – 8670)

This zone commences at approximate Ch 5700 on a narrow strip of land between St Neots Road and the A428, which is populated by semi-mature trees/ vegetation west of Madingley Mulch Roundabout. Between Ch 5700 – 6100 the alignment trends east between St Neots Road to the south, and the A428 to the north (c. 8 - 10m north). It should be noted that the A428 appears to be in cut along some of this length with the proposed route apparently located over some of the existing cut slopes.

The route begins to bear south-east at Ch. 6100 and crosses St Neots Road (Ch 6150) into a series of agricultural fields, continuing south-east to Ch. 6700, before then bearing east until Ch. 8200. Through this area the route predominantly passes through agricultural fields (except a small area of semi-mature trees at Ch 6350) and passes several features including a Waterworks site 150m west (with covered reservoir) at Ch 6300 and water tower/radio masts 70m north-east of Ch 6325; 150m south of Crome Lea Business Park at Ch 7200, and 60m north of two further covered water reservoirs at Ch 7800. A water main also runs from the Waterworks site to the two covered reservoirs orientated south-east, crossing the route at approximate Ch 6450 and Ch 7260. The village of Coton is present south of the alignment from

approximate Ch 7800, with the PTR and NMU crossing Cambridge Road, 40m north-east of the properties in the village at approximate Ch 8375. From Ch 8375 – 8670 the route passes through Coton Orchard. A location plan for Zone 4 is presented in Figure 2.6.

Figure 2.6: Location Plan – Zone 4

Source: Contains OS data © Crown copyright and database right (2019)

2.3.4.1 Route Zone 4 Proposed Earthworks

Proposed earthworks over c. 0.5m in height or depth in this Zone are summarised below.

Between approximate Ch 5700 - 6100 this zone runs adjacent to the south of the A428, where areas of side long embankment up to c. maybe up to c. 2.5m may be required. Due to the width restrictions from the proposed route and the A428 present directly north, and St Neots Road to the south it is possible that a retaining feature may be required (See 2.1.4.2).

The remainder of this route between Ch 6200 - 8700 is predominantly shown to be upon embankment, with embankment heights up to c. 2.5m expected. Areas of cut may also be required along some sections, which are shown to be up to c. 1.5m deep.

It should be noted that no topographic information is currently available between approximate Ch 6200 - 6800 and this section should be updated upon receipt of this information. A summary of the proposed earthworks is presented in the Table below.

Earthwork Type	Maximum Height (m)*	Length (m)*	Start Chainage*	End Chainage*	Underlying Geology
Embankment	1.0**	600	6300	6900	Oadby Member
	1.5	400	7530	7930	Oadby Member
	1.0**	460	8210	8670	Chalk

Table 2.5: Summary of Proposed Earthworks - Zone 4

Earthwork Type	Maximum Height (m)*	Length (m)*	Start Chainage*	End Chainage*	Underlying Geology
Cutting	2.5	600	5700	6300	Oadby Member
	1.5	750	6900	7400	
	1.0	90	8060	8150	
At Grade	-	150	7000	7150	Oadby Member
		130	7400	7530	
		130	7930	8060	
		70	8150	8210	

*Dimensions and Chainages are approximate

**No long-section topographic information is available between Ch 6200 – 6900, therefore this section should be updated upon its receipt and the above estimated heights should be treated with caution. LIDAR data has also been utilised within this assessment due to limited topographic survey coverage. Potential variability in the LIDAR data which may impact the proposed assessment is recorded between Ch 8300 – 8670, and as a result this should be treated with caution.

2.3.4.2 Route Zone 4 Proposed Structures

It is understood that no significant structures are currently proposed within this Zone. However, it is possible that a retaining structure may be required between approximate Ch 5700 - 6100 due to the proposed site passing over an existing cutting associated with the A428.

2.3.5 Route Zone 5 (Ch 8670 – 9450)

Route Zone 5 commences on the OBC alignment at approximate Ch 8670, within Coton Orchard. The route then bears south-east to Ch 8800, before bearing east, passing into an agricultural field at Ch 9000. The M11 and its earthworks, orientated north to south, are present between approximate Ch 9230 – 9390, where the proposed route crosses over it from west to east. Immediately east of the M11 (approximate Ch 9300 – 9400), the zone passes through an area of semi mature trees, beyond which the zone enters the West Cambridge Site of the University of Cambridge. The proposed NMU diverges from the PTR at approximate Ch 9425, and an NMU spur trends west, connecting to an existing cycle/footway adjacent to the east of the M11. From Ch 9400 the route enters the West Cambridge Site, a developed area, and Ada Lovelace Road is present at approximate Ch 9450, beyond which is assessed within Zone 6.

A location plan for Zone 5 is presented in Figure 2.7.

Figure 2.7: Location Plan – Zone 5

Source: Contains OS data © Crown copyright and database right (2019)

2.3.5.1 Route Zone 5 Proposed Earthworks

Proposed earthworks over c. 0.5m in height or depth in this Zone are summarised below.

The main earthworks for this section are predominantly associated with the approach embankments for the proposed bridge over the M11. No topographic information is currently available for the proposed heights of this therefore the below has been estimated based on LiDAR data and height of other significant earthworks on the scheme (overpass over the A428 in Zone 2). This section should be updated upon receipt of this information.

Minor areas of cut up to c. 1m are also likely to be required west of the approach embankments.

A summary of the proposed earthworks is presented in the Table below.

Earthwork Type	Maximum Height (m)*	Length (m)*	Start Chainage*	End Chainage*	Underlying Geology
Embankment	1.0m* **	80	8670	8750	Gault Formation
	5.0* **	180	9050	9230	
	5.0 * **	110	9290	9400	
Cutting	1.5* **	300	8750	9050	Gault Formation
At Grade	-	50	9400	9450	Gault Formation

Table 2.6: Summary of Proposed Earthworks – Zone 5

*Dimensions and Chainages are approximate

**No long-section topographic information is available within this Zone; therefore, this section should be updated upon its receipt and the above estimated heights should be treated with caution. LIDAR data has been utilised within this assessment due to limited topographic survey coverage. Potential variability in the LIDAR data which may impact the proposed assessment is recorded across the zone, and as a result this should be treated with caution.

2.3.5.2 Route Zone 5 Proposed Structures

A bridge over the M11 is proposed within the eastern section of this zone (centred at approximate Ch 9260). Based on current proposals this may comprise a 7.3m carriageway and 3.5m NMU facility which will cross the M11, with bridge design currently ongoing. The approach embankments (discussed above) are expected to form part of the design for this and are present between Ch 9100 – 9400 either side of the structure.

2.3.6 Route Zone 6 (Ch 9450 – 11400)

Zone 6 commences from OBC alignment Ch 9450 at Ava Lovelace Road. It trends east with the proposed PTR alignment running along Charles Babbage Road through the West Cambridge Site (Cambridge University), which is bordered by business/ residential/ educational buildings. The existing shared-use facility is to be improved within this zone as part of the proposed NMU works at approximate Ch 10000. The proposed PTR bears south at Ch 10020 and proceeds to cross through an existing car park adjacent to a residence structure, over grass verges and an existing shared-use facility and into an agricultural field.

The alignment crosses over an existing water feature at approximate Ch 10180 (Cambridge West Canal) and bears east from Ch 10200 running through an agricultural field adjacent to the West Cambridge Campus. Several ponds which are bordered by semi-mature trees are located directly adjacent to the route at Ch 10600 and from Ch 10625 – 10700, to the south of which is the Cambridge University Sports Ground. The route joins Adam's Road at approximate Ch 10900, where it is proposed to utilise existing infrastructure, terminating at approximate Ch 11400.

A location plan for Zone 6 is presented in Figure 2.8.

Figure 2.8: Location Plan – Zone 6

Source: Contains OS data © Crown copyright and database right (2019)

2.3.6.1 Route Zone 6 Proposed Earthworks

It is understood at this stage that no significant earthworks are expected within this Zone. Should this change following development of design, this section should be updated accordingly.

2.3.6.2 Route Zone 6 Proposed Structures

It is understood that no significant structures are proposed within this Zone. Should this change following development of design, this section should be updated accordingly.

2.3.7 Route Zone 7 (Park and Ride)

Zone 7 is positioned in the central area of the scheme and comprises a broadly rectangular area c. 325m x 230m to the north-east of the A428 adjacent to the north-east of Scotland Road roundabout. The zone is located within an agricultural field, with a field boundary / verge on to the A428 located along its southern boundary. The Zone is located at approximately 60m AOD, and a location plan for Zone 7 is presented in Figure 2.9.

Figure 2.9: Location Plan – Zone 7

Source: Contains OS data © Crown copyright and database right (2019)

2.3.7.1 Route Zone 7 Proposed Earthworks

It is understood at this stage that no significant earthworks are expected within this Zone. Should this change following development of design, this section should be updated accordingly.

2.3.7.2 Route Zone 7 Proposed Structures

It is understood that no significant structures such as bridges or retaining structures are proposed within this Zone, with the Zone comprising a proposed Park & Ride with associated ancillary infrastructure.

At the time of writing, the current proposed drainage solution will comprise of surface run-off collection in a holding pond, which will be discharged into the adjacent watercourse. It should be noted that this high-level design is not confirmed and is subject to change.

2.3.8 Route Zone 8 (Ch 0 – 2250)

Zone 8 comprises a proposed NMU route along Scotland Road from the proposed Scotland Road Park and Ride to Dry Drayton, and is c. 2250m long. It is understood that the route is a combination of on-road and off-road sections. The proposed NMU route utilises existing footway adjacent to Scotland Road at its southern end, before becoming off-road behind hedgerow east of Scotland Road through a series of agricultural fields for the vast majority of its length. On approach to Dry Drayton, the proposed NMU crosses from east to west at existing traffic calming measures at the Dry Drayton village entrance. From this crossing, the proposed route proceeds along the west of Scotland Road for the remainder of the route, with associated tie-ins in to existing footpaths at its northern end.

A location plan for Zone 8 is presented in Figure 2.10.

Figure 2.10: Location Plan – Zone 8

Source: Contains OS data © Crown copyright and database right (2019)

2.3.8.1 Route Zone 8 Proposed Earthworks

It is understood at this stage that no significant earthworks are expected within this Zone. Should this change following development of design, this section should be updated accordingly.

2.3.8.2 Route Zone 8 Proposed Structures

It is understood that no significant structures are proposed within this Zone.

3 Overview of Entire Study Area

This section provides an overview of the scheme footprint of the proposed routes and location of the Park and Ride.

3.1 Published Geology

A schematic of the superficial, bedrock and combined geology is presented in Figure 3.1 and 3.2.

3.1.1 Artificial Ground

The British Geological Survey (BGS) 1:50,000 Series mapping, the Landmark Envirocheck Report, and the BGS Geology of Britain Online Viewer do not indicate artificial ground within the scheme footprint. However, Artificial Ground is only recorded where it occurs in excess of 2.5m. Though it should be noted that it is likely that this unit will be encountered due to the developed nature of some areas of the site and the surrounding adjacent infrastructure including, for example, adjacent villages and the city of Cambridge, St Neots Road, and the A428/M11.

3.1.2 Superficial Geology

The BGS 1:50,000 mapping indicates the majority of the site is underlain by the Oadby Member (Wolston Glaciogenic Formation), with no superficial deposits recorded in the eastern area of the site.

The Oadby Member (formerly known as Boulder Clay) was formed up to 3 million years ago in the Quaternary Period, in an environment previously dominated by ice age conditions. This unit extensively covers the bedrock geology within the site and wider surrounding area to the west

The unit is described as a sandy silty clay with abundant fragments of chalk and flint, as well as farther travelled erratics of various lithologies. Layers, lenses and pockets of sand and gravel are also common. The base of the unit is sharp, and the uppermost area of this unit is commonly decalcified. The thickness of this unit is noted to be variable, and may be up to 20 - 25m thick.

Other superficial deposits including River Terrace Deposits, Alluvium and Head Deposits are recorded within the wider area, however these are not expected to be encountered.

A sketch of the superficial geology is presented in Figure 3.1.

3.1.3 Bedrock Geology

The BGS mapping indicates that the site is likely to be underlain by several different bedrock units, including the Kimmeridge Clay, Woburn Sand Formation (formerly the Lower Greensand), Gault Formation and the Lower Chalk (West Melbury Marly Chalk Formation). A sketch of the bedrock geology is presented in Figure 3.2.

It should be noted that much of the bedrock geology appears to be obscured at surface and is overlain by the Oadby Member (Figure 3.1). Table 3.1 describes the deposits indicated and presents a typical description, age and thickness.

Based on the BGS mapping the outcrop of Chalk at the site appears to be an outlier which is separated from the main outcrop of Chalk in the district

Table 3.1: Summary of Bedrock Geology

Unit	Typical Description	Age (Ma)	Typical thickness
Kimmeridge Clay	Dark to pale grey clay and calcareous clays with thin beds of oil shale. Tabular beds and septarian nodules of argillaceous limestone (cementstone) are common in the calcareous clays. Abundant ammonites are present. The top of this unit is well marked by the Woburn Sands Formation and the presence of springs.	152 – 157	up to 27m
Woburn Sands Formation	Fossiliferous loosely cemented glauconitic sandstones or unconsolidated pebbly sands. Common basal pebble bed containing phosphatized material from older Jurassic / cretaceous deposits (known as 'coprolite'). Thin layers of silty clay are seen locally.	101 – 126	up to 12m
Gault Formation	Grey clay/mudstone or marl. Basal beds commonly glauconitic, sandy and pebbly with phosphatic nodules. Upper part is highly calcareous and rich in fossils (foreshadowing the deposition of the Chalk). Occasional pyritic / calcareous nodules.	101 - 113	up to 40m
West Melbury Marly Chalk Formation (Grey Chalk Subgroup)	Buff, grey and off-white, interbedded soft marl and hard grey limestone. The lower beds of the unit are blue-grey marls which bear resemblance to the mudstones of the Gault Formation below, passing upwards in to blocky greyish white marly chalk with occasional pyritic nodules. The erosional base of this unit is marked by the Cambridge Greensand Member, described as a glauconitic sandy marl with abundant phosphatic nodules. Angular blocks of igneous/metamorphic rocks have also been encountered in this unit in the Cambridge area. The upper surface is conformable and marked by the erosional surface of either the overlying Zig Zag Chalk Formation or Totterphoe Stone Member (Grey Chalk Subgroup)	94 – 101	15 to 25m
	Where this unit is overlain by the Oadby Member, the uppermost few metres of the Chalk is commonly softened and brecciated with infillings of flint fragments and argillaceous material.		

3.1.4 Structural Geology

Worssam & Taylor (1969) states that two main episodes of folding are recorded within the rocks of the Cambridge district. The first episode occurred post-deposition of the Kimmeridge Clay Formation, but pre-deposition of the Lower Greensand Formation. The second episode of folding, affected all units, including the Late Cretaceous rocks of the Chalk Group. Intermittent vertical movements of the underlying faulted block within this area during the Upper Jurassic and Lower Cretaceous are evident from the condensed / non-sequences, and the presence of phosphate nodule beds.

The most prominent fold within the region is called the Upware Anticline, which strikes NWE-SSW. The Haddenham Axis, which is the least well-developed of the axes, crosses the eastern area of the site approximately in the region of Coton. Regional dips of exposed strata are very gentle, and local steep dips of up to 10^o degrees may be present in the Woburn Sands Formation.

Figure 3.1: Sketch of Superficial Geology

Source: Contains OS data © Crown copyright and database right (2019), British Geological Survey

Figure 3.2: Sketch of Bedrock Geology

Source: Contains OS data © Crown copyright and database right (2019), British Geological Survey

3.2 Hydrogeology and Hydrology

3.2.1 Hydrogeology

The Envirocheck Report records the following deposits, aquifer classifications and groundwater vulnerabilities at the site (Table 3.2).

Table 3.2: Summary of Hydrogeology

Strata	Aquifer Classification	Groundwater Vulnerability
Oadby Member	Secondary undifferentiated)	Medium
Kimmeridge Clay Formation	Unproductive Strata	Low
Woburn Sands Formation	Principal Aquifer	Medium
Gault Clay Formation	Unproductive Strata	Unproductive
West Melbury Marly Chalk Formation	Principal Aquifer	Medium to High (Soluble Rock Risk)

A Secondary Undifferentiated Aquifer is defined as an aquifer which has previously been designated as a minor and non-aquifer in different locations, due to the variable characteristics of the unit.

Principal Aquifers are deposits that have a high intergranular and/or fracture permeability and can provide a high level of water storage as well as supplying river base flow on a strategic scale.

Unproductive Strata are deposits with low permeability that have negligible significance for water supply or river base flow.

The Envirocheck report indicates that the site is not located within a Source Protection Zone (SPZ). The nearest SPZ to the site is indicated to be c. 630m south of the site boundary, to the west of Highfields Caldecote. The BGS 1:100,000 Hydrogeological map (Cambridge to Maidenhead) indicates that groundwater levels within the Lower Greensand (Woburn Sands Formation) range from c. 30m AOD in the west to c. 10m AOD in the east near the village of Coton.

A series of springs are also recorded within Coton, which appear to be located broadly at the boundary between the Oadby Member and the underlying Chalk. This may suggest the presence of groundwater within the Chalk, which has been confined by the Oadby Member overlying it to the west.

3.2.2 Hydrology

Along the site, there are many land drains which appear to be associated with the existing road infrastructure. Several small valley streams are recorded, including Callow Brook which transects the site north of Hardwick and appears to run under the A428 through a culvert orientated north-east to south-west.

Bin Brook is present at its closest c. 200m south of the site orientated approximately north-west to south-east. Several land drains south of the site lead to this, forming a tributary to the River Cam c. 1.1km east of the site.

In the eastern area of the site between Charles Babbage Road and Adam's Road, several ponds and land drains are present. The site also crosses over the West Cambridge Canal, a water feature (non-navigational) which is orientated east to west within the West Cambridge Site (Cambridge University).

The Envirocheck Report shows that the site is not within an area at risk of flooding from rivers or the sea (Flood zone 1 - 3), which correlates with the Flood Map for Planning. The nearest area shown to be at risk of flooding is Bin Brook, c. 20m east of the site at Ch. 11400.

3.3 Radon

The UKradon Interactive Map and Envirocheck Report suggest that the site is either in the lowest, or Lower probability radon area (less than 1% of homes are estimated to be at or above the Action Level), with the Envirocheck Report stating no radon protection measures are necessary in the construction of new dwellings or extensions. Some areas adjacent to the north of the site within the outskirts of Cambridge have a maximum radon potential of 1 - 3%.

3.4 Unexploded Ordnance

The Preliminary UXO Threat Assessment completed by 6 Alpha Associates recorded the potential for unexploded WWI and WWII ordnance to exist at the western quarter of the site, notably around Bourn Airfield, (approximate Ch 0 - 2400) to be Likely, with no further action required in the eastern area of the site (approximate Ch 2400 - 11400). For further details, please refer to Appendix E.

3.5 Environment

A series of environmental surveys have already been completed at the site, with some surveys yet to be completed. These are summarised in a separate document produced by Mott MacDonald.

Surveys undertaken to date have identified the presence of badger setts within 250m of the proposed scheme, mostly occurring in the area between the M11 and Grange Road. The grassland habitat at the Waterworks site at Madingley Mulch is considered to be of most conservation significance and a site of high value for invertebrates. For further details, reference should be made to the Environmental Impact Assessment Scoping Report produced by Mott MacDonald.

There are also historic surveys which have been undertaken assessing Tree Preservation Orders (TPOs) and root protection zones across the site. Further surveys are proposed to be undertaken and this report should be updated upon their completion.

3.6 Archaeology and Heritage

An Environmental Impact Assessment Scoping Report is currently being produced by Mott MacDonald Limited which summarises the archaeological and heritage information present at the site. Furthermore, a series of archaeological surveys have been undertaken, including geophysical surveys, and trial trenches that have been undertaken across the wider site in 2018. The assessments undertaken to date record several archaeological features ranging from the Lower/Middle Palaeolithic to Medieval, including Iron Age/Roman settlements. These are summarised in EIA Scoping Report produced by Mott MacDonald.

Areas of known buried archaeology which may be impacted by the currently proposed scheme include for example archaeological remains associated with an Iron Age Roman settlement in Bourn Airfield, Iron Age Enclosures at Scotland Farm, middle Iron Age quarry pits which were recorded during construction of Hardwick Junction, and Iron Age/Roman settlements and enclosure remains west of Cambridge. For further details, please refer to the report listed above.
4 Route Zone Desk Study Findings

This section of the report provides a detailed geotechnical and geo-environmental desk study assessment of each of the proposed zones described in Section 2.3 that the study area has been split into (Figure 4-1). It also provides a commentary of how each feature identified relates to each of the proposed route options in each zone.

Section 4.1 - 4.8 provides a summary of the desk study findings for each of the zones and route options contained within each, and a summary is presented in Section 4.9.

4.1 Zone 1

4.1.1 Site Geology

4.1.1.1 Published Geology

Table 4.1 presents the geology likely to be present directly beneath and in the surrounding area of Zone 1 as recorded by the 1:50,000 BGS mapping. For a description of the strata indicated, along with the age and thickness information please refer to Section 3.1.

Table 4.1: Summary of geology indicated on BGS mapping – Zone 1

Artificial Ground	Superficial Geology	Bedrock Geology
Onsite	Onsite	Onsite
None indicated. However, Artificial Ground may be present on-site as a result of existing road infrastructure, residential housing and Bourn Airfield.	Oadby Member.	Kimmeridge Clay Formation to the west from Ch. 0 to Ch. 830. Not anticipated to be encountered.
	Oadby Member.	Woburn Sands Formation to the eas from Ch. 830 to Ch. 2000. Not
None indicated, However, Artificial		Offsite
None indicated. However, Artificial Ground may be present on-site as a result of existing road infrastructure, residential housing and Bourn Airfield.		Gault Formation (east of Zone 1). West Walton Formation and Ampthill Clay Formation (west of Zone 1). Not anticipated to be encountered.

4.1.1.2 Encountered Geology

The BGS Geoindex indicates that there are several boreholes located along the length of Zone 1, which are mostly adjacent to or within the immediate surrounding area of the site boundary. The logs for these boreholes can be found in Appendix C, and a summary of the borehole records is presented in Table 4.2.

Table 4.2: Summary of historical BGS Boreholes – Zone 1

Borehole ID	Eastings	Northings	Distance / Compass Direction	Chainage	Depth (m bgl)
TL35NW57	533690	259790	50m NW	Ch 700	18.0
TL35NW75	533520	259580	20m N	Ch 400	3.0
TL35NW79	533660	259710	10m NW	Ch 650	4.2

Borehole ID	Eastings	Northings	Distance / Compass Direction	Chainage	Depth (m bgl)
TL35NW59	534000	259790	40m N	Ch 1100	5.0
TL35NW87	534300	259760	20m N	Ch 400	3.0
TL35NW88	534480	259770	30m N	Ch 1450	3.0
TL35NW90	534660	259760	20m N	Ch 1550	3.0

It should be noted there are further historic boreholes adjacent to the route and within the surrounding area. However, the selected records are thought to be representative of the ground conditions likely to be present at this Zone.

All records recorded a veneer of topsoil (approximately 0.3m thick), which overlays the Oadby Member, described as a firm to very stiff fissured silty gravelly CLAY, with gravel comprising fine to coarse gravel of flint and chalk, and occasional pockets of sand and gravel. Occasional cobbles of flint and chalk, and boulders of siltstone have been encountered. It is also described locally as being fissured. The thickness of the Oadby Member was not proven in these historic boreholes.

4.1.2 Hydrogeology and Hydrology

4.1.2.1 Hydrogeology

The Envirocheck Report indicates that the Oadby Member is a Secondary Undifferentiated Aquifer, recorded as having medium groundwater vulnerability. The strata are considered to be *"both minor and non-aquifer in different locations due to the variable characteristics of the rock type"* (Environment Agency, 2018).

The Kimmeridge Clay to the west is recorded as Unproductive Strata (low permeability, negligible significance for water supply) and the Woburn Sands Formation to the east is recorded as a Principal Aquifer (high permeability and high levels of water storage).

Groundwater was encountered in the historical BGS borehole TL35NW57 at 17.8m (53.55m AOD, within the Oadby Member), rising to 17.7mbgl (53.65m AOD) after 20 minutes. Groundwater monitoring in this historic borehole indicated that the groundwater level range lies between 16.99 – 4.09mbgl (54.36 – 67.26m AOD). A groundwater seepage was also encountered in TL35NW88 at 1.7m within a granular bed. These results suggest that the groundwater level may be variable within the Oadby Member, and perched groundwater may be encountered.

An area between 500m – 1km south/south-west of the zone is within a Source Protection Zone (SPZ) 3, defined by the Environment Agency (2018) as "*the area around a source within which all groundwater recharge is presumed to be discharged at the source*".

4.1.2.2 Hydrology

A series of drains are present within the wider surrounding area and are present north of Ch. 0, Ch. 400 and south of Ch. 1750. Sirius Lake, a possible man-made lake to the south-west of Upper Cambourne is located c. 650m south-west of Ch. 0. Two other small ponds lie c. 315m and 120m south of the route (at Great Common Farm and Little Common Farm, respectively).

The Envirocheck Report shows that there is no risk of flooding from surface water for the majority of the Zone 1 footprint.

The Envirocheck Report also records that there is potential for groundwater flooding of property below ground level across the western half of this zone, with limited potential to occur within the eastern half.

4.1.3 Environmental Records

The following section presents any environmental records detailed in the Landmark Envirocheck Report. In order to avoid repetition, where numerous records were deemed to be similar, only one of them has been included. For further details, please refer to the Landmark Envirocheck Report in Appendix C and drawing 403394-MMD-XX-00-GIS-YG-0003 in Appendix A.

4.1.3.1 Soil Geochemistry

The maximum recorded concentrations of metals within the soils at this Zone and in the immediate surrounding area, as reported in the Landmark Envirocheck Report, are presented in Table 4.3.

Concentration (mg/kg)			
15 – 25			
< 1.8			
60 - 90			
<100			
30 – 45			

4.1.3.2 Groundwater and Surface Water Abstraction

The Envirocheck Report indicates that there are no records of groundwater or surface water abstractions within 1km of Zone 1.

4.1.3.3 Discharge Consents

The Envirocheck Report indicates that there are seven discharge consents within 500m of Zone 1, in the eastern are of the zone. The consents are summarised in Table 4.4.

	Table 4.4: Summ	ary of discharge	consents – Zone 1
--	-----------------	------------------	-------------------

Name	Easting	Northing	Distance / Compass Direction	Chainage	Discharge Type	Receiving Body
Thyssenkrup p Tallent Limited	534900	259800	60m N	Ch. 1900	Trade Discharge – Process Water	Tributary of Bourn Brook
Pre-Star Limited	534900	259800	60m N	Ch. 1900	Trade Discharge – Process Water	Tributary of Bourn Brook
David Ball Group Public Limited Company	534800	259500	240m SW	Ch. 1800	Sewage Discharges – Final/Treated Effluent – Not Water Company	Tributary of Bourn Brook
Rotortech Ltd	534800	259500	240m SW	Ch. 1800	Sewage Discharges – Final/Treated Effluent – Not Water Company	Tributary of Bourn Brook

Name	Easting	Northing	Distance / Compass Direction	Chainage	Discharge Type	Receiving Body
Martin Jenkins	535439	259807	495m E	Ch. 2000	Sewage Discharges - Final/Treated Effluent – Not Water Company	Unnamed ditch
Martin Jenkins	535439	259807	495m E	Ch. 2000	Sewage Discharges - Final/Treated Effluent – Not Water Company	Unnamed ditch
J Jenkins	535510	259750	495m E	Ch. 2000	Sewage Discharges - Final/Treated Effluent – Not Water Company	Ditch Tributary Cottenham Lode

4.1.3.4 Enforcement and Prohibition Notices

No Enforcement and Prohibition Notices are recorded within 500m of this Zone within the Landmark Envirocheck Report.

4.1.3.5 Pollution Incidents to Controlled Waters

Three pollution incidents to controlled waters are recorded in the Envirocheck Report within 500m of Zone 1, summarised in Table 4.5. Two of the incidents are related to industries at Bourn Works, on land which is believed to be historically associated with Bourn Airfield.

Table 4.5 Summary of pollution incidents to controlled waters - Zone 1

Туре	National Grid Reference	Distance / Compass Direction	Chainage (OBC)	Pollutant	Receiving Body
Metal industry	534900 259600	145m S	Ch. 1900	Chemicals – Unknown	Tributary of Bourn Brook
Industrial: Other	534900 259500	240m S	Ch. 1900	Oils – Other Oil	Tributary of Bourn Brook
Domestic/Reside ntial	534800 259400	340m S	Ch. 1775	Sewage – Septic Tank Effluent	Tributary of Bourn Brook

4.1.3.6 BGS Mineral Sites

No BGS Mineral Sites are recorded within approximately 500m of this Zone within the Landmark Envirocheck Report.

4.1.3.7 Waste Activities

No landfill sites are recorded within approximately 500m of this Zone within the Landmark Envirocheck Report.

One record of Extractive Industries or Potential Excavations from 1950 – 1980 is recorded within the Landmark Envirocheck Report, summarised in Table 4.6.

Use	Easting	Northing	Chainage	Distance / Compass Direction
Pond	533528	259439	Ch. 425	100m, S

Table 4.6: Summary of extractive industries or potential excavations from 1950 – 1980 – Zone 1

This record appears to relate to a pond which is present adjacent to Broadway Farm.

4.1.3.8 Hazardous Substances

No Control of Major Accident Hazards Sites or Planning Hazardous Substances Consents / Enforcements are recorded within 500m of this Zone within the Landmark Envirocheck Report.

One Notification of Installations Handling Hazardous Substances (NIHHS), although currently inactive, is recorded c. 410m south from Ch. 1750, and is associated with the Bourn Works.

4.1.3.9 Registered Radioactive Substances

The Landmark Envirocheck Report records no registered radioactive substances within 500m of route Zone 1.

4.1.3.10 Contemporary Trade Directory Entries

The Envirocheck Report identified nine contemporary trade directory entries within 500m of Zone 1, which are summarised in Table 4.7.

Table 4.7: Summar	y of contem	porary trade	directory	entries - Z	one 1
-------------------	-------------	--------------	-----------	-------------	-------

Name	Easting	Northing	Chainage	Distance / Compass Direction	Classification	Status
New Star	532931	259892	Ch. 0	350m NW	Ventilators & Ventilation Systems	
Allclean Enterprises	532963	259488	Ch. 0	190m SW	Cleaning Services – Domestic	Active
David Ball Plc	534829	259570	Ch. 1800	170m S	Waterproof Material Manufacturers	Inactive
D B Group	534829	259568	Ch. 1800	170m S	Engineering Materials	Active
David Ball Group	534829	259568	Ch. 1800	170m S	Engineering Materials	Inactive
D B Group	534829	259568	Ch. 1750	200m S	Builders' Merchants	Active
Filcris Ltd	533424	259136	Ch. 350	430m S	Machine Shops	Active
Thyssenkrupp Automotive Tallent Chassis Ltd	534950	259419	Ch. 1850	320m S	Car Component Manufacturers	Inactive
Cambourne Car Clinic	534877	259422	Ch. 1925	320m S	Car Body Repairs	Inactive

4.1.3.11 Sensitive Land Uses

The Zone is located within a Nitrate Vulnerable Zone.

No further sensitive land uses are recorded within 500m of the site within the Landmark Envirocheck Report.

4.1.3.12 Archaeology and Heritage

Please refer to Section 3.6 for further details.

4.1.3.13 Historical Development

A summary of the historical development of Zone 1 and the surrounding area within 500m is detailed in Table 4.8, highlighting the major changes observed in the historical maps.

It should be noted that where no significant changes and/or no coverage of the site or its surrounding area is provided, these records have not been included in the summary below.

Zone 1 and the immediate surrounding area are covered in slices A (A7, A8 and A12) and B (B5, B6, B9 and B10) of Envirocheck Report 1.

Year of Publication	Scale	On-site	Off-site
1886 - 1887	1:10,560	Agricultural fields form the dominant land-use across the site.	A road is orientated north-west to south- east c. 80m north.
		A road crosses the site at Ch . 450 and a lane leading up to Grange Farm crosses the site at Ch. 1700.	Pond located c. 100m south adjacent to Broadway Farm, and c. 280m south adjacent to Great Common Farm.
			Surrounding land-use comprises agricultural land and a series of farms.
1903	1:10,560	No significant change.	Water tank c. 230m north of Ch. 700 (labelled as Water Works)
1927	1:10,560	School on-site at Ch. 1700.	Development of housing (Highfields) along Highfields Road from c. 530m to the south/south-east of Ch 2000. A pond is located adjacent to Grange Farm c. 250m south of Ch 1800.
1960	1:10,560	Bourn Airfield present on-site (between Ch. 500 - 2000). Route mainly covering sections of runway/taxiways and small ancillary buildings. Airfield labelled as disused. Tracks and unknown buildings surrounding Grange Farm (Ch. 1400 - 1700).	A new rectangular structure with earthworks appears to be present near the waterworks, c. 220m NW of Ch 700. Development associated with bourn airfield is recorded up to c. 900m south of the site, west of Highfields. The road to the north of the site is labelled as A45 (T)
1976	1:2,500	No significant change.	A tank is recorded c. 40m NE of the site at Ch 0, and an aerial mast recorded 50m S of Ch 350. The rectangular structure near the waterworks is labelled as a Reservoir (covered) and a series of additional tanks are present adjacent to St Neots Road (c. 230m north-west from Ch. 700).

Table 4.8: Historic map review – Zone 1

1980 – 1983	1:10,000	A structure is recorded on the site on the footprint of the airfield c. 30m south-east of Ch. 520.	Grange Farm is now labelled as two Works, with several additional structures recorded at the eastern footprint of Bourn Airfield (c. 200 – 400m south of Ch 1800). Further development of Highfields south/southeast of the site is recorded
2000	1:10,000	No significant change	The A45 is relabelled as A428 and has a series of drains adjacent to it c. 200m east of Ch 2000.
2006	1:10,000	No significant change.	The village of Cambourne has been constructed, including a new road, balancing pond and additional land drains present between c. 0.3 – 1km west of the site. A drain is recorded c. 50m NE of Ch 2000, running parallel to the A428 A roundabout is present along the A428 c. 450m E of Ch 2000
2020	1:10,000	The site comprises of a footpath and a small patch of wooded vegetation. Building recorded in 1980-1982 now labelled as Gofers House. The village of Upper Cambourne is now present and forms a large residential area (between Ch. $0 -$ 450). The village extends into the surrounding area west / southwest of the site, towards Cambourne.	The A428 has been upgraded and widened, and the new road runs parallel to the north of the site (between Ch. $0 -$ 2000), c. 30m north from Ch. 800 – 2000, including a flyover present c. 220m NE of Ch 2000. Sewage Pumping Station located c. 750m north-west of the site (Ch. 0). Map suggests large building in the south- eastern side of the Bourn Works has now been demolished.

4.1.3.14 Site History: Bourn Airfield

Constructed in 1940, RAF Bourn was originally intended as a satellite station for RAF Oakington (Bourn.org, 2013). It was used for training purposes from 1941 and was subjected to at least six air raids/strategic bombing between 1941 and 1944. Numerous aircraft were destroyed on the site during its operational years.

The airfield was given to the RAF Maintenance Command in 1947 and was closed in 1948; some of the land was sold off for agricultural use. Currently, the site is used for light aircraft and small industrial developments and other recreational uses (Bourn Airfield.co.uk, n.d.).

The airfield is now the subject of a Planning Application for redevelopment. As such potential concerns such as contaminants may be addressed by the developer.

4.1.3.15 Contaminants of Concern

Based on information obtained on the site and surrounding area, the Department for Environment (1995) Industry Profiles and Environment Agency Technical Guidance on Special Sites (2001), several contaminants of concern may be present. Those potentially present within 250m of the site have been summarised in Table 4.9.

Mott MacDonald is not insured to advise on risk arising from asbestos or radioactive substances, and therefore will not give advice relating to risks associated with them. It is recommended that a specialist is consulted regarding mitigation or remedial measures required relating to the presence of asbestos and/or radioactive substances at the site.

Potential Contaminant Source	Location	Contaminants of Concern
Building labelled 'Gofers House', (potentially to be demolished)	Western edge of the disused Bourn Airfield c. 30m south-east of Ch. 520.	Asbestos.
Highways / roads	A428 and St Neots Road located north of the site.	Organic compounds e.g. petrol, diesel, MTBE, hydrocarbons; heavy metals.
Bourn Airfield	Approximately between Ch. 0 – 1800, within and immediately south of the route.	Asbestos, UXO, acids, pesticides, herbicides, fungicides, solvents, paints, chemical warfare agents, metal powders, heavy metals, fuel and lubricating oils, de- icers, detergents, wastes reflective of site operations, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs).

Table 4.9: Contaminants of concern – Zone 1

4.1.4 Utilities

A high-level review of the main C2 utility return data indicates that electricity (high voltage) and water services are present adjacent to and parallel to Broadway which the proposed PTR crosses, these utilities pass around the western outskirts of Bourn Airfield adjacent to the A428. A different water main runs along the northern outskirts of Bourn Airfield between Ch 1250-2000. Several services are recorded running adjacent to and crossing Wellington Way, one of which appears to be a medium pressure gas main leading to an area of historic industry c. 250m south of the site at Ch 2000. It is understood that a series of drawings recording the approximate location of the C2 utility returns are being produced by Mott MacDonald, and these should be referred to for further information.

4.2 Zone 2

4.2.1 Site Geology

4.2.1.1 Published Geology

Table 4.10 presents the geology likely to be present directly beneath and in the surrounding area of Zone 2 as recorded by the 1:50,000 BGS mapping. For a description of the strata indicated, along with the age and thickness information please refer to Section 3.1.

Table 4 10: Summar	v of geology	indicated on	BGS man	ning – Zone 2
	y oi geology	maicated on		ping Lone L

Artificial Ground	Superficial Geology	Bedrock Geology
Onsite	Onsite	Onsite
None indicated. However, Artificial Ground may be present as a result of	Oadby Member.	Woburn Sands Formation (Ch. 2000 to Ch. 2300).
existing road infrastructure. Offsite None indicated.	Offsite Oadby Member.	Gault Formation (Ch. 2300 to Ch. 2750. Offsite Kimmeridge Clay (to the west)

4.2.1.2 Encountered Geology

The BGS Geoindex indicates that there are several boreholes located along the length of Zone 2, which are mostly adjacent to or within the immediate surrounding area of the site footprint. The logs for these boreholes can be found in Appendix C, and a summary of the borehole records is presented in Table 4.11.

It should be noted there are many further historic boreholes within the surrounding area, however, the selected records are thought to be representative of the ground conditions likely to be present at this Zone.

All records recorded a veneer of topsoil (up to approximately 0.4m thick) overlying the Oadby Member, which was typically described as a firm to very stiff fissured silty gravelly CLAY, with gravel comprising fine to coarse gravel of flint and chalk, and occasional pockets of sand and gravel. Occasional cobbles/boulders were also recorded. The thickness of the Oadby Member was not proven in these historic boreholes.

Borehole ID	Eastings	Northings	Distance / Compass Direction	Chainage	Depth (m bgl)
TL35NE78	535080	259800	60m N	Ch. 2050	18.0
TL35NE82	535180	259790	40m N	Ch. 2200	18.0
TL35NE101	535290	259820	30m N	Ch. 2325	4.5
TL35NE105	535620	259790	On-site	Ch. 2550	4.2
TL35NE85	535850	259790	50m E	Ch. 2750	6.0

Table 4.11: Summary of historical BGS Boreholes – Zone 2

Although not recorded in these historic boreholes, it is possible that Made Ground and/or engineered fill may be encountered within this zone due to the presence of the A428 and any associated earthworks on and adjacent to the site.

4.2.2 Hydrogeology and Hydrology

4.2.2.1 Hydrogeology

The Envirocheck Report indicates that the Oadby Member is a Secondary Undifferentiated Aquifer, recorded as having medium groundwater vulnerability.

The Woburn Sands Formation on the western side of the Zone is recorded as a Principal Aquifer (high permeability and high levels of water storage). The Gault Formation to the east is classified as Unproductive Strata (no sensitive groundwater).

Groundwater was encountered in the historical BGS boreholes TL35NE78 and TL35NE82 within the Oadby Member at 0.35 - 0.72m bgl (71.1 - 70.73m AOD) and 1.03 - 1.06m bgl (70.37 - 70.34m AOD), respectively. This information suggests that the groundwater level may be relatively close to surface, and that perched groundwater is likely to be encountered.

Land between 500m - 1km south-west of the site is within a Source Protection Zone (SPZ) 3.

4.2.2.2 Hydrology

A number of drains are present on-site between Ch. 2000 and 2450 adjacent to the A428, with further drains recorded within the wider surrounding area which appear to drain agricultural land.

The Envirocheck Report shows that there is largely no risk of flooding from surface water for the majority of the Zone 2 footprint. There is, however, a medium/high risk of surface water flooding on Wellington Way, leading up to the Bourn Roundabout.

The Envirocheck Report also records limited potential for groundwater flooding of property below ground level across the western portion of this zone (Ch 2000 - 2300), with some potential for it to occur within the eastern area (Ch 2300 - 2750).

4.2.3 Environmental Records

4.2.3.1 Soil Geochemistry

The maximum recorded concentrations of metals within the soils at this Zone and in the immediate surrounding area, as reported in the Landmark Envirocheck Report, are presented in Table 4.12.

Chemical	Concentration (mg/kg)
Arsenic	15 – 25
Cadmium	< 1.8
Chromium	60 - 120
Lead	<100
Nickel	30 – 45

Table 4.12: Summary of Soil Geochemistry – Zone 2

4.2.3.2 Groundwater and Surface Water Abstractions

The Envirocheck Report indicates that there are no records of groundwater or surface water abstractions within 1km of Zone 2.

4.2.3.3 Discharge Consents

The Envirocheck Report indicates that there are seven discharge consents within 500m of Zone 2, three of which are within the proposed development boundaries. The consents are summarised in Table 4.13.

Table 4.13: Summary	/ of discharge	consents - Zone 2
---------------------	----------------	-------------------

Name	Easting	Northing	Distance / Compass Direction	Chainage	Discharge Type	Receiving Body
Thyssenkr upp Tallent Limited	534900	259800	60m N	Ch. 1900	Trade Discharge – Process Water	Tributary of Bourn Brook
Pre-Star Limited	534900	259800	60m N	Ch. 1900	Trade Discharge – Process Water	Tributary of Bourn Brook
J Jenkins	535510	259750	40m S	Ch 2500	Sewage Discharges - Final/Treated Effluent – Not Water Company	Ditch Tributary Cottenham Lode
Martin Jenkins	535439	259807	10m N	Ch 2450	Sewage Discharges - Final/Treated Effluent – Not Water Company	Unnamed ditch
Martin Jenkins	535439	259807	10m N	Ch 2450	Sewage Discharges - Final/Treated Effluent – Not Water Company	Unnamed ditch
Robin Martlew	535565	259568	220m S	Ch 2575	Sewage Discharges - Final/Treated Effluent – Not Water Company	Tributary of Callow Brook
Mr & Mrs R B Scurll	535600	259400	380m S	Ch 2600	Sewage Discharges - Final/Treated Effluent – Not Water Company	Land

4.2.3.4 Enforcement and Prohibition Notices

No Enforcement and Prohibition Notices are recorded within 500m of this Zone within the Landmark Envirocheck Report.

4.2.3.5 Pollution Incidents to Controlled Waters

Three pollution incidents to controlled waters are recorded in the Envirocheck Report within 500m of Zone 2, which have previously been summarised in Table 4.5. Two of the incidents are related to industries at Bourn Works, on land which is believed to be historically associated with Bourn Airfield.

4.2.3.6 BGS Mineral Sites

No BGS Mineral Sites are recorded within approximately 500m of this Zone within the Landmark Envirocheck Report.

4.2.3.7 Waste Activities

No landfill sites or Extractive Industries or Potential Excavations (1950 – 1980) are recorded within approximately 500m of this Zone within the Landmark Envirocheck Report.

4.2.3.8 Hazardous Substances

No Control of Major Accident Hazards Sites or Planning Hazardous Substances Consents / Enforcements are recorded within 500m of this Zone within the Landmark Envirocheck Report.

One Notification of Installations Handling Hazardous Substances (NIHHS), although currently inactive, is recorded approximately 450m south-west of Ch 2000, and is associated with the Bourn Works.

4.2.3.9 Registered Radioactive Substances

The Landmark Envirocheck Report records no registered radioactive substances within 500m of route Zone 2.

4.2.3.10 Contemporary Trade Directory Entries

The Envirocheck Report identified ten contemporary trade directory entry within 500m of Zone 2, which is summarised in Table 4.14.

Table 4.14: Summary of contemporary trade directory entries – Zone 2

Name	Easting	Northing	Chainage	Distance / Compass Direction	Classification	Status
David Ball Plc	534829	259570	Ch. 2000	260m SW	Waterproof Material Manufacturers	Inactive
D B Group	534829	259568	Ch. 2000	260m SW	Engineering Materials	Active
David Ball Group	534829	259568	Ch. 2000	260m SW	Engineering Materials	Inactive
D B Group	534829	259568	Ch. 2000	260m SW	Builders' Merchants	Active
Thyssenkrupp Automotive Tallent Chassis Ltd	534950	259419	Ch. 2000	325m SW	Car Component Manufacturers	Inactive
Cambourne Car Clinic	534877	259422	Ch. 2000	350m SW	Car Body Repairs	Inactive
McCulloch Direct Ltd	535382	259311	2200	470m SE	Electrical Goods Sales, Manufacturers & Wholesalers	Inactive
BP Express Shopping	535574	259669	Ch. 2600	110m S	Petrol Filling Stations	Inactive
Liquatek	536196	259644	Ch. 2750	470m SE	Damp and Dry Rot Control	Active
B P Service Station	536073	259647	Ch. 2750	360m SE	Petrol Filling Stations	Active

4.2.3.11 Sensitive Land Uses

The Zone is located within a Nitrate Vulnerable Zone.

No further sensitive land uses are recorded within 500m of the site within the Landmark Envirocheck Report.

4.2.3.12 Archaeology and Heritage

Please refer to Section 3.6 for further details.

4.2.3.13 Historical Development

A summary of the historical development of Zone 2 and the surrounding area within 500m is detailed in Table 4.15, highlighting the major changes observed in the historical maps.

It should be noted that where no significant changes and/or no coverage of the site or its surrounding area is provided, these records have not been included in the summary below.

Zone 2 and the immediate surrounding area are covered in Slice B (B6, B7, B10 and B11) of Envirocheck Report 1.

Year of Publication	Scale	On-site	Off-site
1886	1:10,560	1:10,560 A road crosses the site orientated east to west at Ch. 2200. Another lane joins this road from the south at Ch. 2470.	The surrounding land is predominantly comprised of agricultural land, farms and plantations, with Grange Farm (c. 200m south of Ch 2000, containing a pond) and Highfield Farm (c. 370m south of Ch 2500.)
		A building (Gate House) is present at the junction of these two roads at approximate Ch. 2470.	
1903	1:10,560	Methodist Chapel now labelled adjacent to the Gate House building at Ch. 2470.	Some small dwellings are now present to the south of the site (>250m south/south-east).
1927	1:10,560	An Iron age coin find is recorded adjacent to the	Continued development south of the site (now labelled Highfields).
		Methodist Chapel.	A tank is labelled at Highfield Farm (c. 400m south-east of Ch. 2550.
1938 – 1953	1:10,560	No significant change.	Continued residential development in Highfields. Some buildings added to the south- east of the site (c. 500m from Ch. 2550)
1960	1:10,000	The road crossing the site is labelled as A45 (T)	Bourn Airfield (disused) now mapped, c. 250m south-west from Ch. 2100.
1960 – 1968	1:10,000	No significant change.	No significant change.
1976 1:2,500 A45 (T) is also labe Neots Road A new building is p		A45 (T) is also labelled as St Neots Road A new building is present	Grange Farm is no longer recorded, and several Works and tanks are present at its former location between c. 200 – 400m south of
		(Childerley Lodge) c. 60m north-west from the Methodist Chapel at Ch. 2470.	Ch 2000 (Bourn Works). Further tanks are recorded c. 250m south of the site on the outskirts of Highfields (c. 350m SE of Ch 2200)
1979 – 1986	1:2,500	No significant change	A petrol station is labelled directly adjacent to the site boundary, c. 80m south of Ch 2550.
1980 – 1983	1:10,000	No significant change	Continued development in Highfields with large buildings on the northern boundary of the village, and development along the southern side of St Neots Road c. 200m south-east from Ch 2750.

Table 4.15: Historic map review – Zone 2

			A caravan Park is recorded c. 200m south of Ch 2600.
2000	1:10,000	A field drain crosses the site orientated north to south at Ch, 2200 and connects to a drain running adjacent to the south side of St Neots Road.	No significant change.
2006	1:10,000	St Neots Road junction is now a roundabout (100m south of Ch 2500. The Methodist Chapel, Childerley Lodge and Gate House remain at the northern facing exit of the roundabout along an unnamed lane. The drain adjacent to the south of St Neots Road now extends to Ch 2000.	No significant change.
2020	1:10,000	An overpass (and associated earthworks) connects the existing roundabout to the new A428, and crosses the site orientated north-west to south- east at Ch 2300. Wellington Way (small road) is now present, connecting Bourn Works/disused airfield to the roundabout at Ch. 2000 – 2450.	A large building at Bourn Works appears to have been demolished. The A428 is constructed, which passes east to west c. 100m north of St Neots Road. This comprises two carriageways which is located adjacent to the northern site boundary orientated east to west (c. 20 – 40m north from Ch 2400).

4.2.3.14 Contaminants of Concern

Based on information obtained on the site and surrounding area, the Department for Environment (1995) Industry Profiles, several contaminants of concern may be present. Those potentially present within 250m of the site have been summarised in Table 4.16.

Mott MacDonald is not insured to advise on risk arising from asbestos or radioactive substances, and therefore will not give advice relating to risks associated with them. It is recommended that a specialist is consulted regarding mitigation or remedial measures required relating to the presence of asbestos and/or radioactive substances at the site.

Potential Contaminant Source	Location	Contaminants of Concern		
Agricultural land / farms	Zone surrounded by agricultural land e.g. south of the route, between Ch. 2000 and 2400 (OBC)/ Ch. 1980 – 2420 (Wellington Way).	Metals, nitr-compounds from organic waste and fertilisers, fuel oil, pesticides, animal slurry and silage effluent		
Highways / roads	Entire Zone - between Ch. 2000 and 2750 (OBC/Wellington Way).	Organic compounds e.g. petrol, diesel, MTBE, hydrocarbons; heavy metals.		
Fuel station	Approximately 140m S of Ch. 2550 (OBC), 60m E of Ch. 2500 (Wellington Way).	Alcohols, ethers, organo-lead compounds, benzene, branched olefins, long-chain aliphatic compounds, naphthalene, polycyclic aromatic hydrocarbons, petrol additives, diesel, metals and metal		

Table 4.16: Contaminants of concern – Zone 2

Potential Contaminant Source	Location	Contaminants of Concern
		compounds, waste oil, anti-freeze, brake fluids, solvents (chlorinated and non- chlorinated), paints, glycol ethers, asbestos, isocyanates, battery acids, detergents.

4.2.4 Utilities

A high-level review of the main C2 utility return information indicates that water services and a medium pressure gas main run adjacent to and through Wellington Way. These cross Wellington Way Roundabout and continue along St Neots Road. A high-voltage service is present along St Neots Road at the petrol station, and a water mains hub is present c. 80m east of Childerley Lodge, where a water service crosses the proposed scheme towards the A428, orientated north to south. Gas and water services also run adjacent to the northern spur of Wellington Way Roundabout.. It is understood that a series of drawings recording the approximate location of the C2 utility returns are being produced by Mott MacDonald, and these should be referred to for further information.

4.3 Zone 3

4.3.1 Site Geology

4.3.1.1 Published Geology

Table 4.17 presents the geology likely to be present directly beneath and in the surrounding area of Zone 3 as recorded by the 1:50,000 BGS mapping. For a description of the strata indicated, along with the age and thickness information please refer to Section 3.1.

Table 4.17: Summary	v of aeoloav	indicated on	BGS mapp	ina – Zone 3
	y or geology	maioatea on		

Artificial Ground	Superficial Geology	Bedrock Geology
Onsite	Onsite	Onsite
None indicated. However, Artificial	Oadby Member.	Gault Formation
Ground may be present on-site as a		Offsite
result of existing road infrastructure,	Offsite	West Melbury Marly Chalk
Offsite	Oadby Member.	Formation (north and east).
None indicated. However, Artificial Ground may be present on-site as a result of existing road infrastructure, residential housing and Bourn Airfield.		

4.3.1.2 Encountered Geology

The BGS Geoindex indicates that there are several boreholes located along the length of Zone 3, which are mostly adjacent to or within the immediate surrounding area of the zone footprint. The logs for these boreholes can be found in Appendix C, and a summary of the borehole records is presented in Table 4.18.

It should be noted there are further historic boreholes within the surrounding area however the selected records are thought to be representative of the ground conditions likely to be present at this Zone.

Table 4.18: Summary of historical BGS Boreholes - Zone 3

Borehole ID	Eastings	Northings	Distance / Compass Direction	Chainage (OBC)	Depth (m bgl)
TL35NE85	535850	259790	50m E	Ch. 2800	6.0
TL35NE28	536100	259880	60m N	Ch. 3125	24.0
TL35NE113	536290	259880	10m N	Ch. 3325	4.1
TL35NE88	536570	259860	15m NE	Ch. 3575	10.0
TL35NE24	536720	259750	20m S / N	Ch. 3775	1.0
TL35NE124	537040	259790	70m N	Ch. 4200	2.5
TL35NE128	537260	259710	10m N	Ch. 4300	3.1
TL35NE95	537490	259680	25m N	Ch. 4550	15.0
TL35NE33	538600	259540	On site	Ch. 5650	3.0

All records recorded a veneer of topsoil (up to approximately 0.4m thick), and Made Ground was recorded in two locations c. 1m in thickness (TL35NE113 and TL35NE24) comprising of

firm to stiff fissured sandy CLAY with gravel of chalk and flint, pieces of tarmac; or boulders and cobbles with pockets of clay. The Oadby Member was encountered beneath topsoil / Made Ground and was typically described as a firm to very stiff silty gravelly CLAY, with gravel described as fine to coarse flint and chalk, and occasional pockets of sand and gravel. The thickness of the Oadby Member was not proven in these historic boreholes.

Siltstone boulders were also encountered in TL35NE124 at 2.4m bgl, and siltstone erratic/boulders present between 2.1 - 3.1m bgl in TL35NE128, suggesting the possible presence of below ground obstructions.

Although not recorded in most historic boreholes, it is possible that Made Ground and/or engineered fill may be encountered within this zone associated with the A428 and its earthworks.

4.3.2 Hydrogeology and Hydrology

4.3.2.1 Hydrogeology

The Envirocheck Report indicates that the Oadby Member is a Secondary Undifferentiated Aquifer, recorded as having medium groundwater vulnerability.

The Gault Formation is classified as Unproductive Strata (no sensitive groundwater). The West Melbury Marly Chalk Formation to the north/east of the zone is classified as a Principal Aquifer.

Groundwater was encountered in the historical BGS boreholes TL35NE28 (a seepage at 17mbgl i.e. 44.30m AOD) and TL35NE95 (monitored between 1.76 – 4.57mbgl i.e. 56.21 – 59.02m AOD) in the Oadby Member. This suggests groundwater may be encountered at reasonably shallow depths within the Oadby Member and that perched groundwater may be encountered.

4.3.2.2 Hydrology

An extensive network of drains is present on-site (between Ch. 2750 and 5700) and within the wider surrounding area. Callow Brook crosses the route zone at approximately Ch. 4200 orientated north-east to south-west, and runs beneath the A428 via an underpass. There are two balancing ponds approximately 540m west and 270m east of the Scotland Road roundabout (at Ch. 3100 and Ch. 4000, respectively), which are present directly adjacent to the route alignment.

The Envirocheck Report shows that there is largely no risk of flooding from surface water for the majority of the Zone 3 footprint. There are bands of high risk (30-year return) surface water flooding at Ch. 3000 – 3500 and a low-medium risk (100-1000-year return) at Ch. 5700.

There is also potential for groundwater flooding at the surface at these chainages, according to the Envirocheck Report. The rest of Zone 3 mainly has the potential for groundwater flooding in property situated below ground level.

4.3.3 Environmental Records

4.3.3.1 Soil Geochemistry

The maximum recorded concentrations of metals within the soils at this Zone and in the immediate surrounding area, as reported in the Landmark Envirocheck Report, are presented in Table 4.19.

Chemical	Concentration (mg/kg)
Arsenic	15 – 25
Cadmium	< 1.8
Chromium	90 – 120
Lead	<100
Nickel	30 – 45

4.3.3.2 Groundwater and Surface Water Abstractions

The Envirocheck Report indicates that there are no records of groundwater or surface water abstractions within 500m of Zone 3.

4.3.3.3 Discharge Consents

The Envirocheck Report indicates that there are ten discharge consents within 500m of Zone 3. The consents are summarised in Table 4.20.

Name	Easting	Northing	Distance / Compass Direction	Chainage	Discharge Type	Receiving Body
J Jenkins	535510	259750	240m W	Ch 2750	Sewage Discharges - Final/Treated Effluent – Not Water Company	Ditch Tributary Cottenham Lode
Martin Jenkins	535439	259807	320m W	Ch 2750	Sewage Discharges - Final/Treated Effluent – Not Water Company	Unnamed Ditch
Martin Jenkins	535439	259807	320m W	Ch 2750	Sewage Discharges - Final/Treated Effluent – Not Water Company	Unnamed Ditch
Robin Martlew	535565	259568	280m SW	Ch 2750	Sewage Discharges - Final/Treated Effluent – Not Water Company	Tributary of Callow Brook
Anglian Water Services Limited	536390	259740	150m S	Ch 3350	Sewage Discharges – Pumping Station – Water Company	Unnamed Culverted Watercourse
Anglian Water Services Limited	536390	259740	150m S	Ch 3350	Sewage Discharges – Pumping Station – Water Company	Unnamed Culverted Watercourse

Table 4.20: Summary of discharge consents – Zone 3

Name	Easting	Northing	Distance / Compass Direction	Chainage	Discharge Type	Receiving Body
Anglian Water Services Limited	536390	259740	150m S	Ch 3350	Storm/emergen cy overflow	Unnamed Culverted Watercourse
Anglian Water Services Limited	538450	259490	25m S	Ch 5550	Public Sewage – Storm Sewage Overflow	Tributary of Bin Brook
Anglian Water Services Limited	538450	259490	25m S	Ch 5550	Sewage Discharges – Final/Treated Effluent – Water Company	Tributary of Bin Brook
W T Burden, Civil Engineering/ Building Materials	538380	259350	180m SW	Ch 5550	Sewage Discharges – Final/Treated Effluent – Not Water Company	Tributary of Bin Brook

4.3.3.4 Enforcement and Prohibition Notices

No Enforcement and Prohibition Notices are recorded within 500m of this Zone within the Landmark Envirocheck Report.

4.3.3.5 Pollution Incidents to Controlled Waters

No Pollution Incidents to Controlled Waters are recorded within 500m of this Zone within the Landmark Envirocheck Report.

There is, however, one reported incident on the Substantiated Pollution Incident Register within 500m of Zone 3. This is summarised in Table 4.21.

Table 4.21 Summary of substantiated pollution incidents – Zone 3

Authority	Easting	Northing	Distance / Compass Direction	Pollutant	Impact
Environment Agency – Anglian Region	537970	260039	450m N (Ch. 5050)	Agricultural Materials and Wastes: Slurry and Dilute Slurry	Category 2: Significant Incident (Water)

4.3.3.6 BGS Mineral Sites / Mining

No BGS Mineral Sites are recorded within approximately 500m of this Zone within the Landmark Envirocheck Report.

4.3.3.7 Waste Activities

No landfill sites or Extractive Industries or Potential Excavations (1950 – 1980) are recorded within approximately 500m of this Zone within the Landmark Envirocheck Report.

One Licensed Waste Management Facility (licence surrendered) is located approximately 250m south-east of Ch. 3350. The facility was in the Household, Commercial and Industrial Transfer Stations category.

4.3.3.8 Hazardous Substances

No Hazardous Substances are recorded within 500m of this Zone within the Landmark Envirocheck Report.

4.3.3.9 Registered Radioactive Substances

The Landmark Envirocheck Report records no registered radioactive substances within 500m of route Zone 3.

4.3.3.10 Contemporary Trade Directory Entries

The Envirocheck Report identified twenty-nine contemporary trade directory entries within 500m of Zone 3, one of which is within the site boundary. These are summarised in Table 4.22. Further contemporary trade directory entries are recorded within the wider surrounding area and are detailed within the Envirocheck Report.

Table 4.22: Summary of contemporary trade directory entries – Zone 3

Name	Easting	Northing	Chainage	Distance / Compass Direction	Classification	Status
BP Express Shopping	535574	259669	Ch. 2750	200m SW	Petrol Filling Stations	Inactive
The Tavistock Press (Cambridge) Ltd	537209	259637	Ch. 4250	280m S	Printers	Inactive
CSC Automotive	537184	259637	Ch. 4250	50m S	Garage Services	Active
CSC Vehicle Service and Repair Centre	537184	259637	Ch. 4250	50m S	Mot Testing Centres	Inactive
Cambridgeshire Sports Cars	537185	259635	Ch. 4250	50m S	Garage Services	Inactive
CSC Vehicle Service and Repair Ltd	537185	259635	Ch. 4250	50m S	Garage Services	Inactive
Helix Continuing Care	537065	259651	Ch. 4000	20m S	Stairlifts – Manufacturers and Installers	Inactive
Mark Weatherhead	537014	259645	Ch. 4000	75m SW	Agricultural Engineers	Inactive
3 Counties Cleaning	536705	259703	Ch. 3700	70m S	Commercial Cleaning Services	Inactive
3 Counties Cleaning	536705	259703	Ch. 3700	70m S	Commercial Cleaning Services	Inactive

Name	Easting	Northing	Chainage	Distance / Compass Direction	Classification	Status
S L Pallets	536670	259705	Ch. 3700	70m S	Pallets, Crates and Packing Services	Inactive
Nakitas Wholesale Paints	536394	259714	Ch. 3350	180m S	Do It Yourself Wholesalers	Inactive
Curtis Surfacing Contractors and Plant Hire	536394	259714	Ch. 3350	180m S	Asphalt and Coated Macadam Laying Contractors	Inactive
Mark Weatherhead Ltd	536367	259716	Ch. 3350	180m S	Agricultural Machinery – Sales and Service	Active
Liquatek	536196	259644	Ch. 3050	200m S	Damp and Dry Rot Control	Active
B P Service Station	536973	259647	Ch. 3200	270m S	Petrol Filling Stations	Active
Adawall Construction Chemicals Ltd	538247	259519	Ch. 5300	0m	Builders' Merchants	Inactive
Silver Star Chauffeur Service	538423	259487	Ch. 5400	75m SE	Car Engine Tuning and Diagnostic Services	Inactive
Anatune Ltd	537592	259616	Ch. 4600	25m S	Laboratory Equipment, Instruments and Supplies	Inactive
Technisol	537402	559616	Ch. 4450	50m S	Electrical Goods Sales, Manufacturers and Wholesalers	Active
Burdens	538289	259385	Ch. 5350	135m S	Builders' Merchants	Inactive
Blue Rose Cars	537591	259422	Ch. 4600	185m SE	Car Engine Tuning and Diagnostic Services	Active
Silo & Storage Systems Ltd	537048	259260	Ch 4100	445m S	Agricultural Machinery - Sales & Service	Inactive
Tiptop Cleaning	536196	259644	Ch 3170	200m S	Cleaning Services - Domestic	Active

Name	Easting	Northing	Chainage	Distance / Compass Direction	Classification	Status
Cambridge Mobile Mechanics	537360	259369	Ch 4480	500m S	Garage Services	Inactive
Eve'S Homeserve & Commercial	536793	260241	Ch 3650	200m N	Cleaning Services - Domestic	Inactive
Eve'S Homeserve	536793	260241	Ch 3650	200m N	Cleaning Services - Domestic	Inactive
Cambio Ltd	536802	260295	Ch 3650	200m N	Chemicals & Allied Products	Inactive

4.3.3.11 Sensitive Land Uses

The Zone is located entirely within a Nitrate Vulnerable Zone. The eastern side of Zone 3 (Ch. 3800 – 5700) from Scotland Road to Hardwick is classified as Area of Adopted Green Belt.

No further sensitive land uses are recorded within 500m of the site within the Landmark Envirocheck Report.

4.3.3.12 Archaeology and Heritage

Please refer to Section 3.6 for further details.

4.3.3.13 Historical Development

-

A summary of the historical development of Zone 3 and the surrounding area within 500m is detailed in Table 4.23, highlighting the major changes observed in the historical maps.

It should be noted that where no significant changes and/or no coverage of the site or its surrounding area is provided, these records have not been included in the summary below.

Zone 3 and the immediate surrounding area are covered in Slice B (B7, B8, B11 and B12) and C (C5) of Envirocheck Report 1 and Slice C (C12) and D (D5, D6, D7, D9, D10 and D11) of Envirocheck Report 2.

Table 4.23: F	historic map	review – Zone 3	
N/ /	0	0 ! (

Year of Publication	Scale	On-site	Off-site
1886 – 18861:10,560A road (St Neots Road) is preser orientated approximately east to west through agricultural land an is present within the site footprint 	1:10,560 1:2.500	A road (St Neots Road) is present orientated approximately east to	St Neots Road is present c. 50 – 80m south of the site between Ch 2750 – 3700 (OBC).
	west through agricultural land and is present within the site footprint from Ch 3700 (OBC).	There is a collection of buildings/a farm adjacent to St Neots Road, south of the proposed route at Ch. 4200.	
			Scotland Road crosses the route at approximately Ch. 3700.
			Two more farms (Park Farm and Redhouse Farm) are labelled to the north and south of the route (Ch. 5200), respectively.
			Highfield Farm present to the south-west of Ch. 2800.

			Scotland Farm present to the north (Ch. 3800), along Scotland Road.
1902 -1903	1:10,560 1:2,500	No significant change.	Collection of buildings at Ch. 4200 is now labelled as Hardwick Hall.
1926 - 1927	1:10,560 1:2,500	A field drain crosses the site orientated NE / SW, at approximate Ch 3450.	Tank labelled at Highfield Farm. New Farm and residential housing adjacent to Scotland Farm.
1938 – 1953	1:10,560 1:2,500	New lane crosses the route at Ch. 4150.	Development of residential/commercial buildings along St Neots Road (Hardwick) adjacent to the site, and new dwellings south of St Neots Road c. 100m south between Ch 2750 – 3450 (OBC).
1952	1:10,560 (Partial coverage)	No significant change.	Continued residential development in the eastern side of Zone 3
1960	1:10,000	Callow Brook crosses the site at Ch 4350, orientated northeast to southwest adjacent to Hardwick Hall.	No significant change.
1960 – 1968	1:10,000	No significant change.	No significant change.
1975	1:2,500	No significant change.	A depot is labelled c. 120m south of Ch. 5400, and a silo c. 140m south of Ch 5350.
1976 - 1977	1:2,500	No significant change.	A Sewage pumping station is recorded at Ch. 3400 (c. 150m south), and a filter bed is recorded c. 200m SW of Ch 3700.
			Caravan park c. 250m south-west of Ch. 2800.
1979 - 1984	1:2,500	Earthworks associated with new road construction (labelled as the A45) are shown along the northern boundary of St Neots Road from	Pond c. 190m south of Ch. 2800. A Sewage pumping station is recorded at Ch. 3400 (c. 200m south) and at Ch. 5500 (50m south)
		approximate Ch 5600 – 5700 (continuing to the east)	A new roundabout has been constructed c. 700m east of Ch 5700, with associated slip roads, earthworks (significant cuttings shown c. 250m east) and overpasses.
1980 – 1983	1:10,000 1:2,500	A roundabout with associated earthworks has constructed along at Scotland Road. The road has	Continued residential and industrial development of Hardwick, with new areas of housing under construction.
		with an additional slip road	The filter bed is no longer labelled south of the site.
		connecting to a roundabout east of this zone (Zone 4). A series of	Agricultural Engineering Works is labelled at Ch. 4000, replacing Hardwick Hall.
		roundabout.	Pump house labelled as Park Farm.
		It appears that significant	An additional structure is present adjacent to the Depot at Ch 5400.
		undertaken from Ch. 5550 associated with the new road construction.	Many land drains are recorded within the wider surrounding area draining agricultural land towards Bin or Callow Brook

		A drain is recorded within the site footprint at Ch 4150. This appears to connect to Callow Brook, flowing north-east from the site.	
		More minor earthworks associated with the road upgrades are shown between Ch 5300 – 5700.	
1994	1:2,500	No significant change.	No significant change.
2000	1:10,000	A series of drains are recorded adjacent to St Neots Road, which is labelled as the A428. These are present between approximate Ch 3300 – 4900	Housing estate developed to the south of St Neots road in the eastern part of Zone 3 (east of Scotland Road). New Farm now labelled as Dry Drayton
		Earthworks are recorded adjacent to the A428 between Ch 4800 – 5050	Two artificial water bodies located at Ch. 4200 – 4300: unknown use.
2006	1:10,000	No significant change.	No significant change.
2020	1:10,000	A new road (A428) has been constructed parallel to St Neots Road to the north and is present adjacent to the site throughout much of this zone.	A substation is labelled to the east of Scotland Road roundabout c. 25m north- east of the route at (Ch. 3800). A pumping station also appears to be present adjacent to this.
		The drain which crosses the OBC	Scotland Farm has also expanded to
		Brook at Ch 4150 both appear to	A second roundabout is added at Scotland
		pass through culverts under the A428.	Road. A covered reservoir is present c. 425m east
		Earthworks associated with the new A428 construction are present within the OBC alignment between Ch 2700 – 4700 including two balancing ponds (at Ch. 3100 and 4000.	of Ch 5700.
		The drains adjacent to St Neots Road have altered slightly due to the construction of the A428.	

4.3.3.14 Contaminants of Concern

Based on information obtained on the site and surrounding area, the Department for Environment (1995) Industry Profiles, several contaminants of concern may be present. Those potentially present within 250m of the site have been summarised in Table 4.24.

Mott MacDonald is not insured to advise on risk arising from asbestos or radioactive substances, and therefore will not give advice relating to risks associated with them. It is recommended that a specialist is consulted regarding mitigation or remedial measures required relating to the presence of asbestos and/or radioactive substances at the site.

Table 4.24: Contaminants of concern – Zone 3

Potential Contaminant Source	Location	Contaminants of Concern
Agricultural land / farms	Zone surrounded by agricultural land	Metals, nitr-compounds from organic waste and fertilisers, fuel oil, pesticides, animal slurry and silage effluent.

Potential Contaminant Source	Location	Contaminants of Concern
Highways / roads	Entire Zone (Ch. 2750 – 5700)	Organic compounds e.g. petrol, diesel, MTBE, hydrocarbons; heavy metals.
Fuel station	250m south-west of Ch. 2800.	Alcohols, ethers, organo-lead compounds, benzene, branched olefins, long-chain aliphatic compounds, naphthalene, polycyclic aromatic hydrocarbons, petrol additives, diesel, metals and metal compounds, waste oil, anti-freeze, brake fluids, solvents (chlorinated and non-chlorinated), paints, glycol ethers, asbestos, isocyanates, battery acids, detergents.
Electrical substation	25m north of Ch. 3800.	Copper, copper alloys, cadmium, chromium, silver, beryllium, aluminium, lead, tin, iron, nickel, cobalt, manganese, bitumen, polychlorinated biphenyls, fire retardants, conductors/semi-conductors, polychlorinated naphthalene, mineral oil, capacitor impregnates, cleaning solvents, transformer oils.
Contemporary trade directory entries	The majority are located along southern side of St Neots Road.	<u>Electrical goods</u> Metals and metalloids, asbestos, polychlorinated biphenyls, inorganic compounds, acids, alkalis, organic solvents, halogenated compounds and mineral oils.
		 Copper, copper alloys, cadmium, chromium, silver, beryllium, aluminium, lead, tin, iron, nickel, cobalt, manganese, bitumen, polychlorinated biphenyls, fire retardants, conductors/semi-conductors, polychlorinated naphthalene, mineral oil, capacitor impregnates, cleaning solvents, transformer oils. Electrical goods Metals and metalloids, asbestos, polychlorinated biphenyls, inorganic compounds, acids, alkalis, organic solvents, halogenated compounds and mineral oils. Garages Metals and metal compounds, waste oil, polycyclic aromatic compounds, heavy metals, anti-freeze, brake fluids, non-chlorinated solvents, chlorinated solvents, paints, thinners, inorganic compounds and detergents. Printers Inorganic pigments, organic pigments, organic dyes, asbestos, barium sulphate, hydrocarbon resins, oils, phenol formaldehyde, amino compounds, alkyds, organic solvents, alcohols and glycol ethers, ketones, actare, dimethylformamide, 1-pitrorronane, plasticizere
		Inorganic pigments, organic pigments, organic dyes, asbestos, barium sulphate, hydrocarbon resins, oils, phenol formaldehyde, amino compounds, alkyds, organic solvents, alcohols and glycol ethers, ketones, esters, dimethylformamide, 1-nitropropane, plasticisers, lubricants, driers and catalysts.
		<u>Asphalt contractors</u> Bitumen, phenols, polycyclic aromatic hydrocarbons, ketones, kerosene, creosote oil, solvents, tar, hydrochloric acid, quaternary ammonium compounds, fuel oils, coal, waste solvents, lubricating oils, ash, polychlorinated biphenyls, asbestos.

4.3.4 Utilities

A high-level review of the main C2 utility return information indicates that a water service and medium pressure gas main cross the scheme orientated north to south at approximate Ch 3350. Electricity services are shown to pass along the west side of Scotland Road Roundabout, which continue south before traversing east along St Neots road terminating just past the junction with Hall Drive. Water utilities run parallel to St Neots Road and the A428 on the northern and southern side and a water main crosses the A428 and proposed PTR at Ch 5520. A medium pressure gas main runs along the south side of St Neots Road between Scotland Road roundabout and the sewage pumping station. Foul water services appear present on the south side of St Neots road connecting to the sewage pumping station present at approximate Ch 5550. It is understood that a series of drawings recording the approximate location of the C2 utility returns are being produced by Mott MacDonald, and these should be referred to for further information.

4.4 Zone 4

4.4.1 Site Geology

4.4.1.1 Published Geology

Table 4.25 presents the geology likely to be present directly beneath and in the surrounding area of Zone 4 as recorded by the 1:50,000 BGS mapping. For a description of the strata indicated, along with the age and thickness information please refer to Section 3.1.

Table 4.25: Summar	y of geology	indicated on	BGS mapping	g – Zone 4
--------------------	--------------	--------------	--------------------	------------

Artificial Ground	Superficial Geology	Bedrock Geology
Onsite	Onsite	Onsite
None indicated. However, Artificial Ground may be present on-site as a result of existing road infrastructure,	Oadby Member (Ch. 5700 – 8260)	West Melbury Marly Chalk Formation (Ch. 8260 – 8700).
residential housing. Offsite	Offsite	Offsite Gault Formation (east, west)
None indicated. However, Artificial Ground may be present on-site as a result of existing road infrastructure, residential housing	Gadby Member (west of zone)	

4.4.1.2 Encountered Geology

The BGS Geoindex indicates that there are several boreholes located within the surrounding area of Zone 4. The logs for these boreholes can be found in Appendix C, and a summary of the borehole records is presented in Table 4.26.

It should be noted there are further historic boreholes within the wider surrounding area however the selected records are thought to be representative of the ground conditions likely to be present in this Zone.

Table 4.26: Summary of historical BGS Boreholes – Zone 4

Borehole ID	Eastings	Northings	Distance / Compass Direction	Chainage	Depth (m bgl)
TL35NE53	539300	259600	220m NE	Ch 6150	24.0
TL35NE162	539370	259370	140m E	Ch 6375	74.5
TL35NE1	539510	258860	240m SW	Ch 6650	23.0
TL45NW138	540510	258720	320m S	Ch 7700	44.9
TL45NW119	541200	258800	280m S	Ch 8400	39.9

All records recorded a veneer of topsoil (up to approximately 0.3m thick) overlying the Oadby Member in the western half of this zone. The Oadby Member was described as a firm to very stiff silty CLAY with gravel of chalk and was up to c. 20m thick, and broadly shown thin to the east towards its margins.

In the central and eastern areas of the site, the West Melbury Marly Chalk Formation was recorded at surface and ranged in thickness between 3.7 - 12.5m. This was described as a marly CHALK with hard bands, or clayey / hard block CHALK which was locally disturbed by coprolite digging.

The Gault Clay Formation was encountered beneath the Chalk as a stiff CLAY and was found to be between 36.4 - 39.0m in thickness. However, limited engineering descriptions were available of this unit within this zone.

4.4.2 Hydrogeology and Hydrology

4.4.2.1 Hydrogeology

The Envirocheck Report indicates that the Oadby Member is a Secondary Undifferentiated Aquifer, recorded as having medium groundwater vulnerability.

The West Melbury Marly Chalk Formation which underlies the entire footprint of this zone, and is likely to be encountered at surface in the central to eastern area, is classified as a Principal Aquifer.

The Gault Formation to the west and east of the zone is classified as Unproductive Strata (no sensitive groundwater).

Zone 4 is not located within a groundwater Source Protection Zone.

4.4.2.2 Hydrology

An extensive network of drains is present within the wider surrounding area of Zone 4 (Ch. 5700 - 8700), some of which cross the route (at Ch. 5700 and 7350). The drains to the south feed into Bin Brook c. 580m south of Ch. 8100.

Two Springs are also recorded in Coton and west of Whitwell Farm, and appear to be associated with the underlying Chalk within this area of the site between c. 220m and 650m south of the site respectively. These both drain southwards towards Bin Brook.

The Envirocheck Report shows that there is generally a low risk of surface water flooding to the route in Zone 4, with bands of low risk (i.e. 1000-year return) where drains cross the route e.g. Ch. 5700 and to the south-east of the Zone where the drains feed into Bin Brook.

The risk of groundwater flooding is generally limited across Zone but is greater at Ch. 5700.

4.4.3 Environmental Records

4.4.3.1 Soil Geochemistry

The maximum recorded concentrations of metals within the soils at this Zone and in the immediate surrounding area, as reported in the Landmark Envirocheck Report, are presented in Table 4.27.

Table 4.27: Summary of Soil Geochemistry – Zone 4

Chemical	Concentration (mg/kg)
Arsenic	< 15 – 25
Cadmium	< 1.8
Chromium	60 - 90

Chemical	Concentration (mg/kg)
Lead	<100
Nickel	30 - 60

4.4.3.2 Groundwater and Surface Water Abstractions

The Envirocheck Report indicates that there is one record of groundwater abstraction and no records of surface water abstraction within 500m of Zone 4, summarised in Table 4.28.

Table 4.28: Summary	of water	r abstractions – Zone 4	ŧ
---------------------	----------	-------------------------	---

Name	Easting	Northing	Distance / Compass Direction	Abstraction Type	Source
N B Blow Ltd	541000	259300	200m N (Ch. 8200)	General Farming and Domestic	Groundwater (borehole)

4.4.3.3 Discharge Consents

The Envirocheck Report indicates that there are eleven discharge consents within 500m of Zone 4. The consents are summarised in Table 4.29.

Table 4.29: Summar	y of discharge	e consents – Zone 4
--------------------	----------------	---------------------

Name	Easting	Northing	Distance / Compass Direction	Chainage	Discharge Type	Receiving Body
L Webster & Sons	539350	259200	0m E	Ch 6550	Trade Discharge - Agricultural and Surface	Groundwater
Anglian Water Services Limited	538450	259490	200m W	Ch 5700	Public Sewage: Storm Sewage Overflow	Tributary of Bin Brook
Anglian Water Services Ltd.	538450	259490	200m W	Ch 5700	Sewage Discharges - Final/Treated Effluent - Water Company	Tributary of Bin Brook
Dr Basile Kalogerakis	539542	259425	190m N	Ch 6570	Sewage Discharges - Final/Treated Effluent - Not Water Company	Tributary of Bin Brook
W T Burden, Civil Engineering/B uilding Materials	538380	259350	180m SW	Ch 5430	Sewage Discharges - Final/Treated Effluent - Not Water Company	Tributary of Bin Brook

Name	Easting	Northing	Distance / Compass Direction	Chainage	Discharge Type	Receiving Body
Chancellor Masters & Scholars Of*	538280	259810	460m NW	Ch 5700	Sewage Discharges - Final/Treated Effluent - Not Water Company	Tributary of Bin Brook
Avlar Boiventures	539350	259860	450m N	Ch 6150	Sewage Discharges - Final/Treated Effluent - Not Water Company	Tributary of Beck Brook
M Walker- Smith	539390	259830	450m N	Ch 6200	Discharge Of Other Matter- Surface Water	Tributary of Beck Brook
Ridgeon Mr	541808	259065	370m NE	Ch 8760	Sewage Discharges - Final/Treated Effluent - Not Water Company	Ground & Unamed Ditch via Soak
Anglia Marketing Communicatio ns	540100	259400	275m N	Ch 7300	Unknown	Land
Dr & Mrs J B Hickling	540700	259500	370m N	Ch 7900	Sewage Discharges - Final/Treated Effluent - Not Water Company	Unnamed Drainage Ditch

*Potentially incomplete record information

4.4.3.4 Enforcement and Prohibition Notices

No Enforcement and Prohibition Notices are recorded within 500m of this Zone within the Landmark Envirocheck Report.

4.4.3.5 Pollution Incidents to Controlled Waters

Five pollution incidents to controlled waters are recorded in the Envirocheck Report within 500m of Zone 4, summarised in Table 4.30.

Table 4.30: Summary of pollution incidents to controlled waters – Zone 4

Туре	National Grid Reference	Distance / Compass Direction	Chainage	Pollutant	Receiving Body
Not Given	539400 259500	300m E	Ch. 6150	Unknown	Ditch at Low Road Comberton
Not Given	539200 259800	305m NE	Ch. 6150	Unknown	Ditch Tributary of Rhee
Road	541200 259000	35m S	Ch. 8400	Chemicals – Fertiliser, Solid	Bin Brook

Туре	National Grid Reference	Distance / Compass Direction	Chainage	Pollutant	Receiving Body
Not Applicable	540800 258900	220m S	Ch. 7950	Miscellaneous – Natural	Pond
Water Company Sewage: Sewage Treatment Works	541400 258400	500m S/SW	Ch. 8700	Sewage – Treated Effluent	Bin Brook

4.4.3.6 BGS Mineral Sites / Mining

One BGS Recorded Mineral Site is present within 500m of this zone, summarised in Table 4.31. One further record is presented within the Envirocheck report within 1km of the site. For further details, please refer to the Envirocheck Report.

Table 4.31: Summary of BGS Recorded Mineral Sites – Zone 4

Site	Easting	Northing	Chainage	Distance / Compass Direction	Commodity	Type / Status
Coton Chalk Pit	540849	258964	Ch. 8100	150m S	Chalk	Opencast, Ceased

Three records of man-made mining cavities are also recorded within 500m of the site, summarised in Table 4.32. Three further records are present within 1km of the site, summarised within the Envirocheck Report.

Table 4.32: Summary of Man Made Mining Cavities – Zone 4

Cavity Type	Easting	Northing	Chainage	Distance / Compass Direction	Commodity
Coprolite Mining – Details unknown	539800	259200	Ch. 7000	75m N	Coprolite
Coprolite Mining – Details unknown	539500	258800	Ch. 6700	360m S	Coprolite
Coprolite Mining – Details unknown	540100	258800	Ch. 7300	330m S	Coprolite

The above record of coprolite mining broadly correlates with descriptions on the historic borehole logs, which suggest that the Chalk is disturbed by mining within this zone.

4.4.3.7 Waste Activities

No landfill sites are recorded within approximately 500m of this Zone within the Landmark Envirocheck Report.

One record of Extractive Industries or Potential Excavations (1950 – 1980) is recorded within the Landmark Envirocheck Report, summarised in Table 4.33.

Use	Easting	Northing	Chainage (OBC)	Distance / Compass Direction	
Reservoir (Covered)	540627	25904	Ch 7800	50m S	

Table 4.33: Summary of extractive industries or potential excavations from 1950 – 1980 – Zone 1

4.4.3.8 Hazardous Substances

No Hazardous Substances are recorded within 500m of this Zone within the Landmark Envirocheck Report.

4.4.3.9 Registered Radioactive Substances

The Landmark Envirocheck Report records no registered radioactive substances within 500m of route Zone 4.

4.4.3.10 Contemporary Trade Directory Entries

The Envirocheck Report identified thirteen contemporary trade directory entry within 250m of Zone 4, which are summarised in Table 4.34.

Name	Easting	Northing	Chainage	Distance / Compass Direction	Classification	Status
Adawall Construction Chemicals Ltd	538247	259519	Ch 5700	400m W	Builders' Merchants	Inactive
Silver Star Chauffuer Service	538423	259487	Ch 5700	230m W	Car Engine Tuning & Diagnostic Services	Inactive
American Battle Monuments Commission	539623	259271	Ch. 6850	35m N	Cemeteries and Crematoria	Inactive
Digital Healthcare Ltd	539964	259326	Ch. 7150	170m N	Medical Equipment Manufacturers	Inactive
Digital Healthcare Ltd	539964	259327	Ch. 7150	170m N	Medical Equipment Manufacturers	Inactive
Burdens	538289	259385	Ch 5700	360m W	Builders' Merchants	Inactive
East Anglian Haulage Ltd Within Madingley Garage	539440	259375	Ch. 6350	100m E	Road Haulage Services	Active
Think Thorne	541522	258805	Ch. 8700	170m S	Office Furniture & Equipment	Active
Aclardian	539374	259830	Ch 6200	440m N	Chemists' & Pharmacists' Suppliers & Wholesalers	Active
Desira Ltd	541204	258882	Ch. 8370	180m S	Car Dealers	Inactive

Table 4.34: Summary of contemporary trade directory entries – Zone 4

Name	Easting	Northing	Chainage	Distance / Compass Direction	Classification	Status
Altone	540983	258921	Ch. 8200	200m S	Printers	Inactive
Vetquip	540964	258910	Ch. 8200	200m S	Laboratory Equipment, Instruments & Supplies	Inactive
Martin Hardy Contract Services	540787	258769	Ch 7970	360m S	Horticultural Equipment Maintenance & Repair	Inactive

4.4.3.11 Sensitive Land Uses

The entire zone is located within an Area of Adopted Greenbelt and a Nitrate Vulnerable Zone.

Madingley Wood, an Ancient Woodland and Site of Special Scientific Interest, is present c. 280m north of the OBC alignment at Ch 7400.

No further sensitive land uses are recorded within the Envirocheck Report within 500m of the zone.

4.4.3.12 Archaeology and Heritage

Please refer to Section 3.6 for further details.

4.4.3.13 Historical Development

A summary of the historical development of Zone 4 and the surrounding area within 500m is detailed in Table 4.35, highlighting the major changes observed in the historical maps.

It should be noted that where no significant changes and/or no coverage of the site or its surrounding area is provided, these records have not been included in the summary below.

Zone 4 and the immediate surrounding area are covered in Slice D (D7, D8 and D11) and E (E5, E6, E7 and E8) from Envirocheck Report 2.

Scale	On-site	Off-site
1:10,560	St Neots Road is already established and is present in the site footprint between Ch $5700 - c$.	Agricultural land and woodland surround the route. The village of Coton lies c. 250m south of Ch. 8100.
	6000, orientated approximately east to west.	Madingley Hall estate lies c. 950m north of Ch. 6200/.
	Long Road branches off from St Neots Road, crossing the route at	Old Clunch (Chalk) pit labelled c. 575m north of Ch. 7450.
	Cn. 5950 After Ch. 6000, the route lies on	A windmill and mill house (corn) is located c. 320m north of Ch. 7900.
	An unnamed lane crosses the	
	Scale 1:10,560	Scale On-site 1:10,560 St Neots Road is already established and is present in the site footprint between Ch 5700 – c. 6000, orientated approximately east to west. Long Road branches off from St Neots Road, crossing the route at Ch. 5950 After Ch. 6000, the route lies on open fields/agricultural land. An unnamed lane crosses the route at approximately Ch. 8400

Table 4.35: Historic Map Review – Zone 4

1903	1:10,560	No significant change.	Another old chalk pit is labelled in the village of Coton, c. 150m south of Ch. 7950.
1927	1:10,560	An Orchard associated with Crome	Residential expansion of Coton.
		Lea Farm crosses the route at approximately Ch. 7200 – 7350 .	A pump house is now located c. 175m north of Ch. 8150.
			Coton Court labelled c. 260m north of Ch. 7600.
			Crome Lea Farm, along with a pump house, have been added, c. 200m north of Ch. 7200.
			Wind pump and tank located c. 620m north of Ch. 6800.
			Unspecified earthworks labelled at Madingley Wood, 300m north of Ch. 7200.
1938 – 1953	1:10,560	No significant change.	Some buildings are added 200m north of Ch. 7000.
1952	1:10,560	No significant change.	Land to the east of Madingley Wood is now the American Military Cemetery.
			New building added c. 130m north of Ch. 8600.
1972 – 1973 (partial)	1:10,000	The Orchard is no longer present and is now shown to be agricultural	Covered reservoir works and pump house c. 100m south of Ch. 7850.
		fields.	Allotment gardens immediately to the south of Ch. 8700.
1980 – 1983	1:10,000	No significant change.	Road to the north of Ch. 5700 altered – additional slip road and Madingley Mulch Roundabout added to the east (north of Ch. 6400). Water tower also labelled adjacent to Ch. 6400. Significant development of Cambridge Road to the east of Zone 4.
2006	1:10,000	Covered reservoir between Ch. 6000 – 6200.	Crome Lea Farm expanded and now includes Crome Lea Business Park.
2020	1:10,000	Unlabelled land-use change at Ch. 7700 – 7800. Small building present, potentially related to the covered reservoirs or agricultural activities.	Electrical substation c. 150m south of Ch. 7800

4.4.3.14 Contaminants of Concern

Based on information obtained on the site and surrounding area, the Department for Environment (1995) Industry Profiles, several contaminants of concern may be present. Those potentially present within 250m of the site have been summarised in Table 4.36.

Mott MacDonald is not insured to advise on risk arising from asbestos or radioactive substances, and therefore will not give advice relating to risks associated with them. It is recommended that a specialist is consulted regarding mitigation or remedial measures required relating to the presence of asbestos and/or radioactive substances at the site.

Potential Contaminant Source	Location	Contaminants of Concern
Agricultural land	Zone surrounded by agricultural land. Discharge of agricultural waste to groundwater - 0m E (Ch 6550).	Metals, nitr-compounds from organic waste and fertilisers, fuel oil, pesticides, animal slurry and silage effluent
Potentially infilled land (non-water) and extractive	Chalk pit c. 150m south of Ch. 7950.	Unknown infill material (potential source of ground gas and organic contaminants)
industries	of Ch. 7800	
Highways / roads	On-site Ch. 5700 – 6200 Off-site Ch. 6200 – 8700	Organic compounds e.g. petrol, diesel, MTBE, hydrocarbons; heavy metals.
Contemporary trade directory entries e.g. printers, laboratory equipment, car/tyre dealers, electrical substation.	<250m west of Ch. 5700, north of Ch. 6600 – 6800 (around Madingley Mulch roundabout) and south of Ch. 7700 – 8700 (Coton)	Electrical goods Metals and metalloids, asbestos, polychlorinated biphenyls, inorganic compounds, acids, alkalis, organic solvents, halogenated compounds and mineral oils. <u>Garages</u> Metals and metal compounds, waste oil, polycyclic aromatic compounds, heavy metals, anti-freeze, brake fluids, non-chlorinated solvents, chlorinated solvents, paints, thinners, inorganic compounds and detergents. <u>Printers</u> Inorganic pigments, organic pigments, organic dyes, asbestos, barium sulphate, hydrocarbon resins, oils, phenol formaldehyde, amino compounds, alkyds, organic solvents, alcohols and glycol ethers, ketones, esters, dimethylformamide, 1-nitropropane, plasticisers, lubricants, driers and catalysts.
Unspecified works	Coton (c. 250m south-east of Ch. 7800)	Potentially a range of contaminants, not limited to: Metals and metal compounds, oils/fuels, polycyclic aromatic compounds, heavy metals, solvents, paints, inorganic compounds, acids, asbestos, polychlorinated biphenyls.

Table 4.36: Contaminants of concern – Zone 4

4.4.4 Utilities

A high-level review of the main C2 utility return information indicates that the scheme passes a Waterworks site 150m west (containing a covered reservoir) at Ch 6300 and water tower/radio masts 70m north-east of Ch 6325; two further covered water reservoirs are found 60m south at Ch 7800. A water main also runs from the Waterworks site to the two covered reservoirs orientated south-east, crossing the route at approximate Ch 6300, Ch 6450 and Ch 7260. A high-voltage electricity service crosses the site orientated north-west to south-east crossing the proposed PTR at Ch 6290 and passing adjacent to the west of the two covered reservoirs. A low pressure gas main runs adjacent to Cambridge Road, where the route passes c. 40m north of Coton. It is understood that a series of drawings recording the approximate location of the C2 utility returns are being produced by Mott MacDonald, and these should be referred to for further information.

4.5 Zone 5

4.5.1 Site Geology

4.5.1.1 Published Geology

Table 4.37 presents the geology likely to be present directly beneath and in the surrounding area of Zone 5 as recorded by the 1:50,000 BGS mapping. For a description of the strata indicated, along with the age and thickness information please refer to Section 3.1.

Artificial Ground	Superficial Geology	Bedrock Geology
Onsite	Onsite	Onsite
None indicated. However, Artificial Ground may be present on-site as a	None recorded.	Gault Formation (Ch 8670 – 9450) Offsite
result of existing road infrastructure	Offsite	Gault Formation
the M11.	None recorded within immediate	West Melbury Marly Chalk
Offsite	surrounding area	the zone)
None indicated. However, Artificial		
Ground may be present on-site as a result of existing road infrastructure,		
residential housing and surrounding		
commercial areas east of the M11.		

4.5.1.2 Encountered Geology

The BGS Geoindex indicates that there are several boreholes located adjacent to the site and within the surrounding area of Zone 5. The logs for these boreholes can be found in Appendix C, and a summary of the borehole records is presented in Table 4.38.

It should be noted there are further historic boreholes within the wider surrounding area however the selected records are thought to be representative of the ground conditions likely to be present in this Zone.

Table 4.38: Summary of historical BGS Boreholes – Zone 5

Borehole ID	Eastings	Northings	Distance / Compass Direction	Chainage	Depth (m bgl)
TL45NW119	541200	258800	350m SW	Ch 8700	39.9
TL45NW110	541990	258650	300m S	Ch 9200	15.2
TL45NW89	542060	258960	20m N	Ch 9350	3.1
TL45NW197	542240	259080	130m N	Ch 9450	20.0

All except one historic borehole recorded a veneer of topsoil (up to approximately 0.45m thick) overlying the Gault Formation. The Gault Formation was described as a firm to stiff slightly to very sandy fissured silty CLAY with occasional gravel and roots near surface. The unit typically lost its sand content with depth and had occasional gravel sized mudstone lithorelics. The thickness of this unit was only proven in one borehole west of the site (TL45NW119) at c. 36.6m.

It should be noted that TL45NW119 records the Chalk present at surface, however this exploratory hole is located c. 350m south-west of this zone and the Chalk is not expected to be encountered in this zone.

4.5.2 Hydrogeology and Hydrology

4.5.2.1 Hydrogeology

The Envirocheck Report indicates that the Gault Formation is classified as Unproductive Strata (no sensitive groundwater).

No superficial deposits are recorded within this zone or the immediate surrounding area.

The West Melbury Marly Chalk Formation present to the west of this zone is classified as a Principal Aquifer.

Groundwater was recorded as a seepage in the Gault Formation at 1.7m bgl in TL45NW197, which may suggest the possible presence of perched groundwater within this unit.

The site is not located within a groundwater Source Protection Zone.

4.5.2.2 Hydrology

An extensive network of drains is present within the wider surrounding area of Zone 5 (Ch. 8700 - 9450), one of which crosses the route at Ch. 9100. The drains to the south feed into Bin Brook (c. 700m south of Ch. 8700).

The Envirocheck Report shows that there is generally a very low risk of surface water flooding to the route in Zone 5, with pockets of low-high risk (i.e. 1000-year to 30-year return) crossing the route between Ch. 8700 – 9100.

The risk of groundwater flooding is limited in the western side of the Zone (Ch. 8700 - 9000), with no reported risk of groundwater flooding thereafter (i.e. moving east towards end of Zone 5 – Ch. 9450).

4.5.3 Environmental Records

4.5.3.1 Soil Geochemistry

The maximum recorded concentrations of metals within the soils at this Zone and in the immediate surrounding area, as reported in the Landmark Envirocheck Report, are presented in Table 4.39.

Table 4.39:	Summary	of Soil	Geochemistry	– Zone 5
-------------	---------	---------	--------------	----------

Chemical	Concentration (mg/kg)		
Arsenic	<15		
Cadmium	<1.8		
Chromium	60 - 90		
Lead	<100		
Nickel	30 - 60		

4.5.3.2 Groundwater and Surface Water Abstractions

The Envirocheck Report indicates that there is one record of groundwater abstraction and no records of surface water abstraction within 500m of Zone 5, summarised in Table 4.40.
Name	Easting	Northing	Distance / Compass Direction	Abstraction Type	Source
Natural Environmental Research	542200	259170	225m N (Ch. 9400)	Industrial Processing (Misc.)	Well and borehole

Table 4.40: Summary of water abstractions – Zone 5

4.5.3.3 Discharge Consents

The Envirocheck Report indicates that there is one discharge consent within 500m of Zone 5, summarised in Table 4.41.

A further 10 discharge consents are present up to 1km from the site, for further details please refer to the Envirocheck Report.

Table 4.41: Summary of discharge consents – Zone 5

Name	Easting	Northing	Distance / Compass Direction	Discharge Type	Receiving Body
Ridgeon Mr	541808	259065	125m N (Ch. 9100)	Sewage Discharges – Final/Treated Effluent – Not Water Company	Ground & Unnamed Ditch via Soak

4.5.3.4 Enforcement and Prohibition Notices

No Enforcement and Prohibition Notices are recorded within 500m of this Zone within the Landmark Envirocheck Report.

4.5.3.5 Pollution Incidents to Controlled Waters

One pollution incident to controlled waters is recorded in the Envirocheck Report within 500m of Zone 5, summarised in Table 4.42.

Table 4.42: Summary of pollution incidents to controlled waters - Zone 5

Туре	National Grid Reference	Distance / Compass Direction	Chainage (OBC)	Pollutant	Receiving Body
Road	541200 259000	400m W	Ch. 8700	Chemicals – Fertilizer, Solid	Bin Brook

4.5.3.6 BGS Mineral Sites / Mining

No BGS Mineral Sites / mines or quarries are recorded within approximately 500m of this Zone within the Landmark Envirocheck Report.

4.5.3.7 Waste Activities

No landfill sites, Extractive Industries or Potential Excavations (1950 – 1980), or areas of Potentially Infilled Land are recorded within approximately 500m of this Zone within the Landmark Envirocheck Report.

4.5.3.8 Hazardous Substances

No Hazardous Substances are recorded within 500m of this Zone within the Landmark Envirocheck Report.

4.5.3.9 Registered Radioactive Substances

12 records of Registered Radioactive Substances within 500m of Zone 5 (Ch. 9450) were identified in the Landmark Envirocheck Report. They are associated with the University of Cambridge and British Antarctic Survey for the storage, use and disposal of radioactive substances.

4.5.3.10 Contemporary Trade Directory Entries

The Envirocheck Report identified five contemporary trade directory entries within 500m of Zone 5. These are summarised in Table 4.62Table 4.22 4.43. Further contemporary trade directory entries are recorded within the wider surrounding area and are detailed within the Envirocheck Report.

Name	Easting	Northing	Chainage (OBC)	Distance / Compass Direction	Classification	Status
Desira Ltd	541204	258882	Ch. 8670	250m SW	Car Dealers	Inactive
Think Thorne	541522	258805	Ch. 8670	130m S	Office Furniture & Equipment	Active
Altone	540983	258921	Ch. 8670	475m, W	Printers	Inactive
Vetquip	540964	258910	Ch. 8670	480m W	Laboratory Equipment, Instruments & Supplies	Inactive
Polysolar	542207	259234	Ch 9450	300m N	Builders' Merchants	Active

Table 4.43: Summary of contemporary trade directory entries – Zone 5

4.5.3.11 Sensitive Land Uses

The majority of this zone is within an Area of Adopted Greenbelt, and the entire zone is within a Nitrate Vulnerable Zone. No further sensitive land uses, apart from areas of Adopted Greenbelt within the surrounding area, are recorded within 500m of the site within the Envirocheck Report.

4.5.3.12 Archaeology and Heritage

Please refer to Section 3.6 for further details.

4.5.3.13 Historical Development

A summary of the historical development of Zone 5 and the surrounding area within 500m is detailed in Table 4.44, highlighting the major changes observed in the historical maps.

It should be noted that where no significant changes and/or no coverage of the site or its surrounding area is provided, these records have not been included in the summary below.

Zone 5 and the immediate surrounding area are covered in Slice E (E3, E4, E7 and E8) from Envirocheck Report 2.

Year of Publication	Scale	On-site	Off-site
1886 – 1888	1:10,560 1:2,500	Site entirely comprises of agricultural land (between Ch. 8670 – 9450).	St Neots Road is present c. 425m north of Ch. 8800.
1902 – 1904	1:10,560 1:2,500	No significant change.	Rectory Farm c. 320m north of Ch. 9000.
1938 – 1953	1:10,560	Marked ground (potentially a car park or storage yard) crosses route at Ch. 9400, associated with unlabelled works c. 200m north.	Unlabelled works c. 200m north of Ch. 9400, comprising two large buildings, small ancillary buildings and tracks. Two large buildings c. 200m south- east of Ch. 9450.
1970 – 1973	1:10,000 1:2,500	No significant change.	Unlabelled works demolished, replaced with small laboratory building (c. 250m north) and Atlas Centre (c. 70m north) – Ch. 9400.
			Chimney and tank identified at Depot c. 200m south-east of Ch. 9450.
			University of Cambridge School of Veterinary Medicine established c. 550m north-east of Ch. 9400.
			Allotment gardens c. 100m south-west of Ch. 8800.
1983	1:10,000	M11 crosses the route at Ch.	Atlas Centre now larger building.
		9250, with significant earthworks identified	British Antarctic Survey building c. 300m north of Ch. 9400.
		(cutting/embankments).	Pumping station c. 590m north-east of Ch. 9450.
			Atlas Centre now labelled Design Centre, which is a larger building that borders the route at Ch. 9400.
2000	1:10,000	No significant change.	Design Centre now labelled Computer Aided Design Centre.
			British Antarctic Survey building expanded.
			New laboratory (High Cross), with outdoor structures, c. 100m north-east of Ch. 9450.
2006	1:10,000	No significant change.	Small changes to the layout of Computer Aided Design Centre. Park and Ride added in Bradbush Fields c. 500m north-east of Ch. 9450.
2020	1:10,000	No significant change.	Significant expansion of University of Cambridge campus south-east of Ch. 9450. Charles Babbage Road runs east-west along the route (Zone 6, from Ch. 9450).

Table 4.44: Historic map review – Zone 5

Potential excavation related to expansion of University of Cambridge campus immediately to the east of Ch. 9450.
Small building c. 170m south of Ch. 9400.
Department of Materials Science and Metallurgy c. 280m south-east of Ch. 9450.
Department of Chemical Engineering and Biotechnology c. 415m south-east of Ch. 9450.
Sports Centre c. 420m south-east of Ch. 9450.
Artificial pond/lake c. 260m south-east of Ch. 9450.
Electrical substation c. 70m north of Ch. 9400.

4.5.3.14 Contaminants of Concern

-

Based on information obtained on the site and surrounding area, the Department for Environment (1995) Industry Profiles, several contaminants of concern may be present. Those potentially present within 250m of the site have been summarised in Table 4.45.

Mott MacDonald is not insured to advise on risk arising from asbestos or radioactive substances, and therefore will not give advice relating to risks associated with them. It is recommended that a specialist is consulted regarding mitigation or remedial measures required relating to the presence of asbestos and/or radioactive substances at the site.

Potential Contaminant Source	Location	Contaminants of Concern
Highways / roads e.g. M11	A1303 c. 450m north of Ch. 9100. M11 crosses the route at Ch. 9250.	Organic compounds e.g. petrol, diesel, MTBE, hydrocarbons; heavy metals.
Agricultural land/allotment gardens	Allotments c. 130m south-west of Ch. 8700. Agricultural land surrounds the route between Ch. 8700 – 9200.	Metals, nitr-compounds from organic waste and fertilisers, fuel oil, pesticides, animal slurry and silage effluent.
On-site and off-site historical and current industrial/commercial activity e.g. electrical substation, laboratory, depots, car dealers, etc.	Construction of buildings has crossed the route at Ch. 9400. Laboratories, British Antarctic Survey and University buildings within 250m of Ch. 9450 (north and north-east). Unspecified historical depot 200m south/south-east of Ch. 9450.	Car dealers Metals and metal compounds, waste oil, polycyclic aromatic compounds, heavy metals, anti-freeze, brake fluids, non-chlorinated solvents, chlorinated solvents, paints, thinners, inorganic compounds and detergents. Other Potentially a range of contaminants, not limited to: Metals and metal compounds, oils/fuels, polycyclic aromatic compounds, heavy metals, solvents, paints, inorganic compounds, acids, asbestos, polychlorinated biphenyls, radionuclides.

Table 4.45: Contaminants of concern – Zone 5

Potential Contaminant Source	Location	Contaminants of Concern
Registered Radioactive Substances	Two records within 250m of Ch. 9400 (north/north-east).	Potentially any radionuclide (principal ones of concern include radium species, tritium and carbon-14).

4.5.4 Utilities

A high-level review of the main C2 utility return information indicates that the scheme does not encounter significant services along the majority of this zone. Foul and surface water, and a low to high pressure gas main are present along / adjacent to Ada Lovelace Road, at approximate Ch 9450, orientated broadly north to south, running parallel with the road. It is understood that a series of drawings recording the approximate location of the C2 utility returns are being produced by Mott MacDonald, and these should be referred to for further information.

4.6 Zone 6

4.6.1 Site Geology

4.6.1.1 Published Geology

Table 4.46 presents the geology likely to be present directly beneath and in the surrounding area of Zone 6 as recorded by the 1:50,000 BGS mapping. For a description of the strata indicated, along with the age and thickness information please refer to Section 3.1.

Table 4.46: Summar	of geology	indicated on	BGS map	ping – Zone 6

Artificial Ground	Superficial Geology	Bedrock Geology
Onsite	Onsite	Onsite
None indicated. However, Artificial Ground may be present associated	None recorded	Gault Formation. Offsite
with the West Cambridge Site (Cambridge University)	Offsite River Terrace Deposits c. 100m SE	West Melbury Marly Chalk Formation (west)
None indicated. However, Artificial Ground may be present associated with the educational/ commercial areas of the West Cambridge Site (Cambridge University), and residential areas along Adam's Road.	of Ch 11400.	

4.6.1.2 Encountered Geology

The BGS Geoindex indicates that there are several boreholes adjacent to or within the immediate surrounding area of Zone 6. The logs for these boreholes can be found in Appendix D, and a summary of the borehole records is presented in Table 4.47.

It should be noted there are further historic boreholes within the wider surrounding area however the selected records are thought to be representative of the ground conditions likely to be present in this Zone.

Table 4.47: Summary of historical BGS Boreholes - Zone 6

Borehole ID	Eastings	Northings	Distance / Compass Direction	Chainage (OBC)	Depth (m bgl)
TL45NW197	542240	259080	130m N	Ch. 9450	20.0
TL45NW180	543210	258690	10m S	Ch. 10575	3.2
TL45NW258	543490	258500	100m S	Ch. 10900	3.5
TL45NW37	544070	258410	110m SE	Ch. 11400	24.8

Topsoil was generally encountered at surface between 0.2 - 0.3m thick, and in TL45NW37 this was recorded to c. 1.1m bgl. In two exploratory holes, a possible weathered deposit of Gault Formation was recorded to 1.4 - 1.9m bgl comprising a firm to stiff fissured sandy (gravelly) clay with occasional pockets of silty sand, and a thin bed of sand and gravel with clay. Beneath this, the Gault Formation was recorded as a stiff silty fissured clay with occasional pockets of selenite crystals and calcareous nodules at depth. The thickness of this unit was not proven.

In TL45NW37 110m SE of Ch 11400, River Terrace Deposits were recorded as a medium to very dense sand and gravel of flint beneath topsoil to 3.0m bgl and overlaid the Gault Formation. These deposits are not expected to be encountered within the site footprint.

4.6.2 Hydrogeology and Hydrology

4.6.2.1 Hydrogeology

The Envirocheck Report indicates that the Gault Formation is classified as Unproductive Strata (no sensitive groundwater).

Superficial Deposits of River Terrace Deposits are recorded c. 100m south-east of the site. These deposits are classified as a Secondary A Aquifer with High Vulnerability. However, these deposits are not expected to be encountered within the site footprint.

The site is not located within a groundwater Source Protection Zone.

No superficial deposits are recorded within this zone. River Terrace Deposits (Sand and Gravel) are recorded c. 100m south-east of Ch. 11400, and are designated as a Secondary A aquifer, which are described as "*permeable layers capable of supporting water supplies at a local scale*" (Environment Agency, 2018).

Groundwater was struck in borehole TL45NW180 at 1.2m bgl (Gault Formation), which may suggest the possible presence of perched groundwater within this unit.

4.6.2.2 Hydrology

A network of drains are recorded within the wider surrounding area leading to the River Cam, present c. 1.1km east of the site.

The West Cambridge Canal, orientated east to west, enters the site at approximate Ch 10150 within the West Cambridge Site (Cambridge University). This appears to run parallel to the route until approximate Ch. 10750 where it enters a culvert and is directed east, towards the River Cam. Further small drains appear to run broadly parallel to this and drain the surrounding area. Two ponds are located directly adjacent to the site between approximate Ch. 10575 – 10775.

Bin Brook passes c. 60m south-east of the site at Ch 11400, orientated north-east to south-west and joins the River Cam east of the site.

The Envirocheck Report shows that there is no risk of flooding from Rivers or the Sea within the site footprint. A minor area c. 10m east of Ch. 11400 associated with Bin Brook is shown as being at risk of Extreme Flooding from Rivers or Sea without Defences (Zone 2 - 3).

The Envirocheck Report suggests that minor areas are at low risk of surface water flooding along Charles Babbage Road (Ch 9450 – 10050). Areas adjacent to the ponds and Cambridge West Canal/drains are shown to be at low to high risk between approximate Ch. 10150 – 10750.

There is also potential for groundwater flooding at the surface at these chainages, according to the Envirocheck Report. The rest of Zone 3 mainly has the potential for groundwater flooding in property situated below ground level.

The zone is not shown to be at risk of groundwater flooding. However, areas from approximately 40m south-east of Ch. 11400 have potential for groundwater flooding to occur at surface.

4.6.3 Environmental Records

4.6.3.1 Soil Geochemistry

The maximum recorded concentrations of metals within the soils at this Zone and in the immediate surrounding area, as reported in the Landmark Envirocheck Report, are presented in Table 4.48.

Table 4.48: Summary of Soil Geochemistry – Zone 6

Chemical	Concentration (mg/kg)
Arsenic	<15
Cadmium	<1.8
Chromium	60 - 90
Lead	<100
Nickel	30 - 45

4.6.3.2 Groundwater and Surface Water Abstractions

The Envirocheck Report indicates that there are three records of groundwater or surface water abstraction within 500m of Zone 6, summarised in Table 4.49.

Table 4.49: Summary of Water Abstractions – Zone 6

Name	Easting	Northing	Distance / Compass Direction	Abstraction Type	Source
Natural Environmental Research	542200	259170	260m NW (Ch. 9450)	Industrial Processing (Misc.)	Well and borehole
Robinson College, Cambridge	543956	258445	25m SE (Ch. 11400)	Other Industrial/Commer cial/Public Services: Heat Pump	Surface
Masters and Fellows of Clare College	544500	258500	500m E (Ch. 11400)	General Farming and Domestic	Surface

4.6.3.3 Discharge Consents

The Envirocheck Report indicates that there are eight discharge consents within 500m of Zone 6. The consents are summarised in Table 4.50.

A further seven discharge consents are present up to 1km from the site, for further details please refer to the Envirocheck Report.

Name	Easting	Northing	Distance / Compass Direction	Chainage	Discharge Type	Receiving Body
The University of Cambridge	543270	258680	10m S	Ch 10650	Discharge of Other Matter – Surface Water	Tributary of Bin Brook
Wimpey Homes Holdings Ltd	543240	258730	40m N	Ch 10600	Discharge of Other Matter – Surface Water	Tributary of Bin Brook
Robinson College, Cambridge	543956	258445	50m S	Ch 11350	Trade Discharges – Cooling Water	Bin Brook
The Needham Research Institute	543700	258380	170m S	Ch 11050	Discharge of Other Matter – Surface Water	Bin Brook
Clare College	544430	258470	420m E	Ch 11400	Sewage Discharges - Final/Treated Effluent - Not Water Company	Land
St Johns College	544348	258770	430m NE	Ch 11400	Sewage Discharges - Final/Treated Effluent - Not Water Company	Tributary Of Bin Brook
St Johns College	544348	258770	430m NE	Ch 11400	Sewage Discharges - Final/Treated Effluent - Not Water Company	Tributary Of Bin Brook
Anglian Water Services Limited	544340	258780	430m NE	Ch 11400	Discharge Of Other Matter- Surface Water	Bin Brook

Table 4.50: Summary of discharge consents – Zone 6

4.6.3.4 Enforcement and Prohibition Notices

No Enforcement and Prohibition Notices are recorded within 500m of this Zone within the Landmark Envirocheck Report.

4.6.3.5 Pollution Incidents to Controlled Waters

Seven pollution incidents to controlled waters are recorded in the Envirocheck Report within 500m of Zone 6, summarised in Table 4.51.

Туре	National Grid Reference	Distance / Compass Direction	Chainage (OBC)	Pollutant	Receiving Body
Cattle (Dairy) Farming: Other	543700 258695	190m NE	Ch. 11100	Organic Wastes: Yard Washings	Tributary of River Cam
Cattle (Dairy) Farming	543700 258700	190m NE	Ch. 11100	Organic Wastes: Yard Washings	Tributary of River Cam
Not Given	543200 258900	200m N	Ch. 10500	Unknown	Ditch Tributary of Cam
Not Given	543000 259000	270m N	Ch. 10300	Unknown	Tributary of Cam
Not Given	544300 258700	360m NE	Ch. 11400	Oils – Other Oil	Bin Brook
Other Transport	544000 259000	500m N	Ch. 11400	Oils – Petrol	Drain
Sewerage: Other	544500 258495	500m E	Ch. 11400	Oils – Other Oil	Hobsons Brook

Table 4.51: Summary of pollution incidents to controlled waters – Zone 6

In addition, two records of Substantiated Pollution Incidents were identified in the Envirocheck Report, summarised in Table 4.52.

Table 4.52: Summary of substantiated pollution incidents – Zone 6

Authority	Easting	Northing	Distance / Compass Direction	Pollutant	Impact
Environment Agency – Anglian Region	543928	258437	45m S (Ch. 11400)	Contaminated Water: Other Contaminated Water	Category 2: Significant Incident (Water)
Environment Agency – Anglian Region	544345	258771	425m NE (Ch. 11400)	Crude Sewage	Category 2: Significant Incident (Water)

4.6.3.6 BGS Mineral Sites / Mining

No BGS Mineral Sites / mines or quarries are recorded within approximately 500m of this Zone within the Landmark Envirocheck Report.

4.6.3.7 Waste Activities

No landfill sites, Extractive Industries or Potential Excavations (1950 – 1980), or areas of Potentially Infilled Land are recorded within approximately 500m of this Zone within the Landmark Envirocheck Report.

4.6.3.8 Hazardous Substances

One record of Explosive Sites is recorded within 500m of the site, summarised in Table 4.53.

No other Hazardous Substances are recorded within 500m of the zone within the Envirocheck Report.

Name	Easting	Northing	Chainage	Distance / Compass Direction	Type / Status
Cambridge / Mr J Deaken (University of Cambridge)	543094	258824	Ch 10450	110m N	Active

Table 4.53: Summary of Explosive Sites – Zone 6

The explosive site appears to be associated with Cavendish Laboratory in the West Cambridge Site (Cambridge University).

4.6.3.9 Registered Radioactive Substances

In addition to the 12 Registered Radioactive Substances identified in 4.5.3.8, six additional records have been identified (18 in total) within 500m of Zone 6, which are all associated with the University of Cambridge regarding the storage, use and disposal of radioactive materials.

4.6.3.10 Contemporary Trade Directory Entries

The Envirocheck Report identified six contemporary trade directory entries within 250m of Zone 6. These are summarised in Table 4.62Table 4.22 4.54. Further contemporary trade directory entries are recorded within the wider surrounding area and are detailed within the Envirocheck Report.

Name	Easting	Northing	Chainage	Distance / Compass Direction	Classification	Status
Polysolar	542207	259234	Ch 9450	320m N	Builder's Merchants	Active
Ideaspace	542898	258790	Ch. 10300	40m N	Flow Measurement Systems – Manufacturers	Active
Base 4 Ltd	542932	258790	Ch. 10300	40m N	Laboratories	Active
Cavendish Laboratory	543094	258824	Ch. 10500	110m N	Laboratories	Inactive
Hitachi	543069	259144	Ch 10450	350m N	Laboratories	Active
Isaac Newton Institute For Mathematical Sciences	543779	258918	Ch 10750	370m N	Laboratories	Inactive

Table 4.54: Summary of contemporary trade directory entries – Zone 6

4.6.3.11 Sensitive Land Uses

The zone between approximate Ch 10150 – 11000 is located at the edge of an Area of Adopted Greenbelt, and the entire zone is classified as a Nitrate Vulnerable Zone.

Except from areas of Adopted Greenbelt within the wider area, no further sensitive land uses are recorded within 500m of the site within the Envirocheck Report.

75

4.6.3.12 Archaeology and Heritage

Please refer to Section 3.6 for further details.

4.6.3.13 Historical Development

A summary of the historical development of Zone 6 and the surrounding area within 500m is detailed in Table 4.55, highlighting the major changes observed in the historical maps.

It should be noted that where no significant changes and/or no coverage of the site or its surrounding area is provided, these records have not been included in the summary below.

Zone 6 and the immediate surrounding area are covered in Slice E (E4 and E8) and F (F1, F2 and F5) from Envirocheck Report 2.

Year of Publication	Scale	On-site	Off-site
1888	1888 1:10,560 The site co 1:2,500 land between	The site comprises agricultural land between Ch. 9450 –	Grange Farm is present c. 200m south of Ch. 10800.
		10000. An unnamed track runs from	University Bicycle Path is recorded c. 180m north of Ch. 11200.
approximately Ch. 10000 – 10900, joining Love Lane which continues east along the route from approximately Ch. 10900 - 11400.	Trinity College Cricket Ground and Pavilion is present c. 100m north of Ch. 11400.		
	Tennis Court and Cricket Grounds are present 150m south-east of Ch. 11400.		
			Bin Brook south of the route c. 60m south of Ch. 11400 (point where it is closest to the route). University Rifle Range c. 320m south
4002 4004	1.10 500		of Ch. 10800.
1903 - 1904	1:2,500	11400) is now called Adams	south of Ch. 11200 – 11400.
	Road.	University Football Ground and Trinity College Tennis Ground c. 300m south of Ch. 11400.	
1927	1:10,560	No significant change.	More housing added immediately to the south of Adams Road (Ch. 10900 – 11400).
			Kings and Clare Colleges Cricket Ground now
			housing/accommodation/large building complex c. 150m south-east of Ch. 11400.
			Anglo-Saxon burial ground c. 375m north-east of Ch. 11400.
1938	1:10,560	No significant change.	Building complex now demolished – University Library established c. 150m south-east of Ch. 11400.

Table 4.55: Historic map review – Zone 6

Cottages c. 350m north	n of Ch 10000
Two large warehouse t 130m south-west of Ch	ouildings c. n. 9950.
Unlabelled buildings as ancillary buildings and north-west of Ch. 9500	ssociated tracks c. 200m
Residential developme surrounding area.	nt in
1966 – 19671:2,500A Roman Road crosses route at Ch. 11100.The Eastern side of Rif now labelled as Univer Officers Training Centr	fle Range is sity Army e
A radio Astronomy Obs present c. 320m south/ Ch. 10800.	servatory is /south-west of
A bird sanctuary, lake a recorded c. 175m north	and sluice are n of Ch. 11100.
1967 – 1970 1:2,500 No significant change. Additional University by residential properties a south of Adams Road.	uildings/ re present
Rifle and Revolver Rar artificial ponds c. 250m 10900.	nge has two n south of Ch.
Merton Hall Farm signi developed (lots of sma 275m north-east of Ch	ficantly Il buildings) c. . 10000.
1972 – 1974 1:10,000 Small track crosses route at Ch. 10200. Atlas Centre c. 100m n 9500.	orth-west of Ch.
Small laboratory c. 250 Ch. 9500.	m north-west of
University of Cambridg Veterinary Medicine es immediately north of C 10000.	e School of stablished h. 9800 –
Warehouses to the sou Depot. Chimney and ta	uth labelled as ank labelled.
1976 – 19771:2,500No significant change.Small pond and earthw north of Ch. 10500.	vorks c. 25m
1982 - 19851:10,000 1:2,500Two areas of minor earthworks are recorded adjacent to theAtlas Centre developed Design Centre.	d, now labelled
School of Veterinary Medicine British Antarctic Survey 300m north-west of Ch	y building c. . 9500.
Depot demolished.	
M11 (with significant ea cutting/embankments) Ch. 9500.	arthworks e.g. c. 250m west of
Large laboratory comp north of Ch. 10500.	lex c. 100m
Another laboratory buil north of Ch. 10500.	ding c. 420m

			Earthworks identified c. 25 – 400m north of Ch. 10550.
			Robinson College buildings established immediately south of Ch. 11400, replacing some previous buildings.
2000	1:10,000	Two ponds cross route at Ch. 10600 and 10700. Cycle track/path crosses route at Ch. 10600, 10800 and 10900.	British Antarctic Survey building expanded. Laboratory c. 100m north of Ch. 9500. Unknown building and tank c. 60m south of Ch. 9900. University Sports Ground c. 50m south of Ch. 10700.
2006	1:10,000	Unnamed road Ch. 10000 – 10200. Unknown building crosses the route at Ch. 10100.	Additional buildings to University of Cambridge campus immediately to the north of Ch. 9900. Unknown building demolished. Isaac Newton Institute of Mathematics expanded c. 375m north of Ch. 11100. Expansion of laboratory complex c. 275m north of Ch. 10350.
2020	1:10,000	Charles Babbage Road runs east-west along the route (from Ch. 9450). Arts centre and car park crosses the route at Ch. 10100.	Significant expansion of University of Cambridge campus south of Ch. 9800. Small building c. 340m south-west of Ch. 9700. Department of Materials Science and Metallurgy c. 90m south-east of Ch. 9700. Department of Chemical Engineering and Biotechnology c. 100m south-east of Ch. 9800. Sports Centre c. 200m south-east of Ch. 9800. Artificial pond/lake c. 160m south-east of Ch. 9700. Cryogenics substation c. 20m north of Ch. 10350. Electrical substation c. 190m north- west of Ch. 9450.

4.6.3.14 Contaminants of Concern

Based on information obtained on the site and surrounding area, the Department for Environment (1995) Industry Profiles, several contaminants of concern may be present. Those potentially present within 250m of the site have been summarised in Table 4.56.

Mott MacDonald is not insured to advise on risk arising from asbestos or radioactive substances, and therefore will not give advice relating to risks associated with them. It is

recommended that a specialist is consulted regarding mitigation or remedial measures required relating to the presence of asbestos and/or radioactive substances at the site.

Potential Contaminant Source	Location	Contaminants of Concern
Highways / roads	M11 and associated earthworks c. 250m west of Ch. 9500.	Organic compounds e.g. petrol, diesel, MTBE, hydrocarbons; heavy metals.
Agricultural land	South and west (within 250m) of Zone 6.	Metals, nitr-compounds from organic waste and fertilisers, fuel oil, pesticides, animal slurry and silage effluent.
Registered Radioactive Substances	>250m north of Ch. 9450 - 10050	Potentially any radionuclide (principal ones of concern include radium species, tritium and carbon-14).
University of Cambridge Campus Buildings and Laboratories	Throughout Zone 5, but mainly clustered between Ch. 9450 – 10600.	Asbestos, metals and metal compounds, inorganic compounds, explosives, acids, alkalis, organic solvents, organic compounds, fuels, polychlorinated biphenyls, polycyclic aromatic hydrocarbons, dioxins.
Other historical and current industrial/commercial activity e.g. demolished depot, electrical substations.	Contemporary trade between Ch. 10300 – 10500. Depot 130m south-west of Ch. 9950.	Potentially a range of contaminants, not limited to: Metals and metal compounds, oils/fuels, polycyclic aromatic compounds, heavy metals, solvents, paints, inorganic compounds, acids, asbestos, polychlorinated biphenyls, radionuclides.

Table 4.56: Contaminants of concern – Zone 6

4.6.4 Utilities

A high-level review of the main C2 utility return information indicates that the scheme passes a series of low to medium pressure gas mains and high voltage electric cables within the West Cambridge Site, which appear to run parallel / perpendicular to Charles Babbage Road which the PTR crosses when changing course south at Ch 10000. Surface and foul water services cross the site at approximate Ch 10550, adjacent to existing ponds, with the foul water service running parallel to Stacey Lane. A low pressure gas main, foul and surface water utilities run parallel along Adam's Road at the eastern end of the zone. It is understood that a series of drawings recording the approximate location of the C2 utility returns are being produced by Mott MacDonald, and these should be referred to for further information.

4.7 Zone 7 – Park and Ride – Scotland Road

4.7.1 Site Geology

4.7.1.1 Published Geology

Table 4.57 presents the geology likely to be present directly beneath and in the surrounding area of Zone 7 as recorded by the 1:50,000 BGS mapping. For a description of the strata indicated, along with the age and thickness information please refer to Section 3.1.

Table 4.57: Summar	v of aeoloa	v indicated on	BGS mapping	ı – Zone 7
	y or geolog	y maioatoa on		

Artificial Ground	Superficial Geology	Bedrock Geology
Onsite	Onsite	Onsite
None indicated.	Oadby Member.	Gault Formation (not anticipated to
Offsite		be encountered).
None indicated. However, Artificial	Offsite	Offsite
Ground may be present c. 20m south of the site associated with Scotland Road Roundabout as earthworks appear to be shown on historic mapping.	Oadby Member.	Gault Formation.

4.7.1.2 Encountered Geology

The BGS Geoindex indicates that there are several boreholes within the footprint and directly adjacent to Zone 7. These include historical boreholes including TL35NE29, TL36SE1, and TL36SE2 (Cable Percussive boreholes), and also TL36SE57 and TL35NE123 (machine excavated trial pits). These were advanced to depths of 1.0 - 24.0m bgl. It should be noted there are further historic boreholes within the surrounding area however the selected records are thought to be representative of the ground conditions likely to be present at this Zone.

All records recorded a veneer of topsoil (0.15 - 0.5m thick), which overlays the Oadby Member, described as a firm to very stiff fissured silty CLAY with much fine to coarse gravel of flint and chalk, and occasional pockets of sand and gravel. Occasional boulder / cobble sized ironstone was recorded in TL35NE123. The thickness of the Oadby Member was not proven in these historic boreholes.

A groundwater strike was recorded at 6.4m bgl in TL36SE2, however the value this rose to is not recorded on the engineering log.

4.7.2 Hydrogeology and Hydrology

4.7.2.1 Hydrogeology

The Envirocheck Report indicates that the Oadby Member is classified as a Secondary Undifferentiated aquifer, and the underlying Gault Formation is classified as Unproductive Strata.

The Oadby Member is recorded as having medium groundwater vulnerability, and the Envirocheck Report indicates that the site is not located within a groundwater Source Protection Zone.

Groundwater was encountered in historical BGS borehole TL36SE2 at 6.4m bgl (48.8m AOD), in the Oadby Member. It is possible that this may represent perched water, however limited further information is available to determine this.

4.7.2.2 Hydrology

A small stream, Callow Brook, is recorded approximately 80m south-east of the Zone, flowing to the north-east. A land drain is also recorded c. 15m north-east of the site, with further land drains in the wider area around the site either draining the agricultural land or the A428 south of the site.

The Envirocheck Report shows that only a very minor area along the eastern boundary of the Zone is at low risk of flooding from surface water. Within the surrounding area, areas at risk from surface water flooding broadly follow the valley of Callow Brook or the land drains.

The Envirocheck Report also records that there is potential for groundwater flooding of property situated below ground level to occur for the majority of the zone, and potential for this to occur at surface for a minor area along the eastern boundary of the zone.

4.7.3 Environmental Records

4.7.3.1 Soil Geochemistry

The maximum recorded concentrations of chemical within the soils at this Zone and in the immediate surrounding area, as reported in the Landmark Envirocheck Report, are presented in Table 4.58

Table 4.58: Summary	of Soil	Geochemistry	– Zone 7
---------------------	---------	--------------	----------

Chemical	Concentration (mg/kg)
Arsenic	15 – 25
Cadmium	< 1.8
Chromium	60 – 120
Lead	<100
Nickel	30 – 45

4.7.3.2 Groundwater and Surface Water Abstraction

No groundwater or surface water abstractions are recorded within approximately 500m of this Zone, with two records located between 500 – 2000m from the site. These are detailed in the Landmark Envirocheck Report, which can be found in Appendix B.

4.7.3.3 Discharge Consents

The Landmark Envirocheck Report records one discharge consent within 250m of the site, presented in Table 4.59.

Table 4.59: Summary of discharge consents - Zone 7

Name	Easting	Northing	Distance / Compass Direction	Discharge Type	Receiving Body
Bushel & Co Ltd	536900	260460	158m NW	Sewage Discharges - Final/Treated Effluent	Tributary Callow Brook

4.7.3.4 Enforcement and Prohibition Notices

No Enforcement and Prohibition Notices are recorded within 500m of this Zone within the Landmark Envirocheck Report.

4.7.3.5 Pollution Incidents to Controlled Waters

The Landmark Envirocheck Report records one pollution incident to controlled waters within 500m of the route zone, summarised in Table 4.60.

Table 4.60: Summary of pollution incidents to controlled waters

Туре	Easting	Northing	Distance / Compass Direction	Pollutant	Receiving Body
Private Sewage (Non-PLC): Sewage Treatment Works	536800	260300	200m W	Sewage – Treated Effluent	Freshwater Stream / River

4.7.3.6 BGS Mineral Sites

No BGS Mineral Sites are recorded within approximately 500m of this Zone within the Landmark Envirocheck Report.

4.7.3.7 Waste Activities

No landfill sites are recorded within approximately 500m of this Zone within the Landmark Envirocheck Report.

One record of Extractive Industries or Potential Excavations from 1950 – 1980 is recorded within the Landmark Envirocheck Report, summarised in Table 4.61.

Table 4.61: Summary of extractive industries or potential excavations from 1950 – 1980 – Zone 7

Use	Easting	Northing	Distance / Compass Direction
Pond	537159	260101	10m, N

This record appears to relate to a pond which is present adjacent to the northern site boundary and based on historical mapping connects to land drains adjacent to the site which flow to Callow Brook.

4.7.3.8 Hazardous Substances

No Hazardous Substances are recorded within 500m of this Zone within the Landmark Envirocheck Report.

4.7.3.9 Registered Radioactive Substances

The Landmark Envirocheck Report records no registered radioactive substances within 500m of route Zone 7.

4.7.3.10 Contemporary Trade Directory Entries

A summary of the recorded contemporary trade directory entries within approximately 250m of the Zone, as reported in the Landmark Envirocheck Report, can be found in Table 4.62. The majority of these appear to be present within Dry Drayton Industries, a business park located north of this Zone, with several records along St Neots Road, c. 200m south of the site.

Name	Easting	Northing	Chainage	Distance / Compass Direction	Classification	Status
Green Solar World Ltd	537034	260326	N/A	6m SE	Electricity Generating & Distributing Equipment	Active
Eve's Home Serve	537034	260326	N/A	6m SE	Commercial Cleaning Services	Inactive
Eve's Homeserve & Commercial Ltd	537034	260326	N/A	6m SE	Laundries & Launderettes	Inactive
Admiral Kleencare	537055	260342	N/A	20m SE	Carpet, Curtain & Upholstery Cleaners	Inactive
Outside In (Cambridge) Ltd	537053	260322	N/A	25m SE	Medical Equipment Manufacturers	Inactive
Copytrax Technologies Uk Ltd	537043	260289	N/A	28m SE	Manufacturers	Inactive
Hilton Heating Components	537066	260316	N/A	39m SE	Central Heating Supplies & Equipment	Active
Thecdproducer .Org	537063	260307	N/A	39m SE	Screen Process Printers	Inactive
Shelford Golf Co	537052	260277	N/A	40m SE	Printers	Inactive
Ice Components	537101 260329	537101 260329	N/A	67m SE	Electronic Component Manufacturers & Distributors	Inactive
Print Absolute	537082	260280	N/A	67m SE	Office Equipment Servicing & Maintenance	Active
Autoclean Services Ltd	537053	260260	N/A	47m SE	Commercial Cleaning Services	Inactive
Sharpe Business System	537061	260258	N/A	56m SE	Photocopiers	Active
T M C Specialist Cleaning Ltd	537072	260253	N/A	68m SE	Carpet, Curtain & Upholstery Cleaners	Active
Mark Weatherhead	537014	259645	N/A	174m S	Agricultural Engineers	Inactive

Table 4.62: Summary of contemporary trade directory entries – Zone 7

Name	Easting	Northing	Chainage	Distance / Compass Direction	Classification	Status
Helix Continuing Care	537065	259651	N/A	198m S	Stairlifts - Manufacturers & Installers	Inactive
C S C Automotive	537184	259637	N/A	215m SE	Garage Services	Active
C S C Vehicle Service & Repair Centre	537184	259637	N/A	215m SE	Mot Testing Centres	Inactive
Cambridgeshir e Sports Cars	537185	259635	N/A	218m SE	Garage Services	Inactive
Csc Vehicle Service & Repair Ltd	537185	259635	N/A	218m SE	Garage Services	Inactive
The Tavistock Press (Cambridge) Ltd	537209	259637	N/A	224m S	Printers	Inactive
Eve's Homeserve	536793	260241	N/A	149m W	Cleaning Services - Domestic	Inactive
Eve's Homeserve & Commercial	536793	260241	N/A	149m W	Cleaning Services - Domestic	Inactive

Further contemporary trade directory entries are recorded in the surrounding area, detailed within the Envirocheck Report.

4.7.3.11 Sensitive Land Uses

The majority of this Zone is located within an area of Adopted Green Belt, and the entire zone is shown to be within a Nitrate Vulnerable Zone.

No further sensitive land uses are recorded within 500m of the site within the Landmark Envirocheck Report.

4.7.3.12 Archaeology and Heritage

Please refer to Section 3.6 for further details.

4.7.3.13 Historical Development

A summary of the historical development of Zone 7 and the surrounding area within 500m is detailed in Table 4.63, highlighting the major changes observed in the historical maps.

It should be noted that where no significant changes and/or no coverage of the site or its surrounding area is provided, these records have not been included in the summary below.

Zone 7 and the immediate surrounding area are covered in slices B (B8 and B12) and C (C5 and C9) of Envirocheck Report 1.

Table 4.63: Historic Map Review – Zone 7

Year of Publication	Scale	On-site	Off-site
1886	1:10,560	The site is located within an agricultural field, bounded along its western boundary by Scotland Road.	Scotland Farm is located immediately west of the site
			Callow Brook is present c. 200m south-east of the site and is orientated to the north/north-east.
			A road runs east to west c. 200m south of the site.
			The village of Hardwick is located c. 1km south of the site.
			The wider surrounding area comprises predominantly of agricultural land with strips/pockets of woodland and plantations.
1886	1:10,560	No coverage of site.	A series of ponds, a sluice and a spring are recorded at Scotland Farm, c. 180m west of the site
1926	1:2,500	No significant changes	A pond is located adjacent to the northern side boundary.
			A row of residential houses, and New Farm is present immediately adjacent to the north site boundary between c. $5 - 250$ m north of the site.
			A possible pit is recorded c. 150m north of the site adjacent to New Farm.
1976 – 1977	1:2,500	No significant changes	New track joins Scotland Road opposite the site from Scotland Farm.
			A track and drain run adjacent to the northern site boundary, orientated south-east, which connect to the existing pond. The drains within
			this area appear to flow towards Callow Brook.
1994	1:2,500	No significant changes.	The area labelled as New Farm is renamed as Dry Drayton Industries and the buildings appears to be split into several units (possible business park).
1926	1:2,500	No significant changes.	Hardwick Hall and residential properties run adjacent to a road (east to west) c. 200m south of the site.
1938	1:2,500	No significant changes.	Further properties now line the road 200m south of the site.
1977	1:2,500	No significant changes.	The road 200m south is labelled St Neots Road. Drains run adjacent to the northern side of the road.
			The village located along St Neots Road is labelled as Hardwick

Year of Publication	Scale	On-site	Off-site
			An agricultural engineering works is present c. 220m south of the site
1979	1:2,500	No significant changes	A new road runs adjacent to the north of St Neots Road, with areas of embankment shown to be present c. 70m south of the site. Drains appear to be present along the base of the new embankment.
			Two small water reservoirs bunded by earthworks are located c. 220m south of the site in Hardwick.
			Hardwick village has seen further development.
1994	1:2,500	No significant changes.	The road north of St Neots Road is labelled as the A45.
1976 – 1977	1:2,500	No coverage of site.	Scotland Farm has expanded slightly with a few additional structures, including two tanks
1979	1:2,500	No coverage of site.	A roundabout with areas of embankment are present c. 220m south-west of the site
1994	1:2,500	No coverage of site.	Minor changes to footprint of Scotland Farm
1980 – 1983	1:10,000	No coverage of site.	A roundabout and new road are constructed to the north of St Neots Road, connecting to Scotland Road, with several drains adjacent to the road.
			A Sewage Pumping Station is located c. 650m south-west of the site
2020	1:10,000	No coverage of site.	A new bridge and roundabout connect Scotland Road to Hardwick, with the roundabout present c. 60m south-west of the site.
			The A428 is present orientated east-west north of St Neots Road, c. 150m south-west of the site.
			A balancing pond is located to the south of the A428 c. 600m south-west of the site.
			Further structures are located in the footprint of Scotland Farm.
2020	1:10,000	An area of wooded vegetation is recorded along the southern boundary of the site.	The A428 has been constructed and is present with its associated slip roads from c. 20m south of the site.
			A balancing pond is located south of the A428 approximately 100m south.

Year of Publication	Scale	On-site	Off-site
			Callow Brook appears to pass beneath the A428 through a culvert approximately 100m south- east.

4.7.3.14 Contaminants of Concern

Based on information obtained on the site and surrounding area and the Department for Environment (1995) Industry Profiles, limited contaminants of concern are likely to be present. Those potentially present within 250m of the site has been summarised in Table 4.64.

Mott MacDonald is not insured to advise on risk arising from asbestos or radioactive substances, and therefore will not give advice relating to risks associated with them. It is recommended that a specialist is consulted regarding mitigation or remedial measures required relating to the presence of asbestos and/or radioactive substances at the site.

Table 4.64: Contaminants of concern - Zone 7

Potential Contaminant Source	Location	Contaminants of Concern
Agricultural land / farms	Zone comprises of an agricultural field	Metals, nitr-compounds from organic waste and fertilisers, fuel oil, pesticides, animal slurry and silage effluent
Highways / roads	Scotland Road adjacent to the site, and the A428 located south of the site.	Organic compounds e.g. petrol, diesel, MTBE, hydrocarbons; heavy metals.

4.7.4 Utilities

A high-level review of the main C2 utility return information indicates that a medium pressure gas main and water utility services run parallel to Scotland Road, adjacent to the site. Water utilities are also recorded along the southern half of the site, and run parallel to the A428 adjacent towards the edge of the agricultural field. It is understood that a series of drawings recording the approximate location of the C2 utility returns are being produced by Mott MacDonald, and these should be referred to for further information.

4.8 Zone 8 – NMU Route (Scotland Road Roundabout to Dry Drayton)

4.8.1 Site Geology

4.8.1.1 Published Geology

Table 4.65 presents the geology likely to be present directly beneath and in the surrounding area of Zone 8 as recorded by 1:50,000 BGS mapping. For a description of the strata indicated, along with age and thickness information please refer to Section 3.1.

Table 4 65: Summary	v of geology	indicated on	BGS ma	nning –	Zone 8
Table 4.05. Summar	y or geology	inuicated on	DG3 111a	pping – i	

Artificial Ground	Superficial Geology	Bedrock Geology
Onsite	Onsite	Onsite
None indicated. Offsite	Oadby Member.	Gault Formation (not anticipated to be encountered).
None indicated. However, Artificial Ground may be present c. 20m south of the site associated with Scotland Road and proximal to development in Dry Drayton.	Offsite Oadby Member. No superficial deposits recorded along some areas of small stream valleys	Offsite Gault Formation. West Melbury Marly Chalk Formation (c. 200m east)

4.8.1.2 Encountered Geology

The BGS GeoIndex indicates that there are few usable borehole scans along the footprint of the Zone. In the southern area of the Zone, Historical BGS boreholes TL36SE57, TL36SE1 are located adjacent to / 20m east of the Zone. North of the Zone, TL36SE38/51 is present approximately 130m north of the Zone (both of these records present the same information).

These records indicate the presence of the Oadby Member overlying the Gault Formation, with the Oadby Member thinning to the north where the ground levels decrease from c. 60m to c. 40m AOD. Its thickness was recorded in one historic borehole (TL36SE38/51) as 7.6m, however, it should be noted that this thickness also includes Made Ground and as these two units were not separated on the historic records. The thickness of the Gault Formation was also proven in this location, recorded as c. 21m thick.

Groundwater was recorded at 19.2m bgl in the well record TL36SE38/51, however it is not stated what strata this originated in.

Three historic well records TL36SE30 and TL36SE54 are located between c. 180 – 250m west of the site, and TL36SE52 approximately 130m north, however, they do not provide sufficient engineering information or thicknesses of the deposits encountered.

4.8.2 Hydrogeology and Hydrology

4.8.2.1 Hydrogeology

The Envirocheck Report indicates that the Oadby Member is classified as a Secondary Undifferentiated aquifer, this is defined as an aquifer which has previously been designated as a minor and non-aquifer in different locations due to the variable characteristics of the unit. The underlying Gault Formation is classified as Unproductive Strata. The West Melbury Marly Chalk Formation is recorded c. 200m east of the site in the valley of Callow Brook and is classified as a Principal Aquifer. It should be noted that this unit is not expected to be encountered. The Oadby Member is recorded as having medium groundwater vulnerability, and the Envirocheck Report indicates that the site is not located within a Source Protection Zone.

Groundwater was encountered in historical BGS borehole TL36SE2 at 6.4m bgl. It is possible that this may represent perched water, however limited further information is available to determine this.

4.8.2.2 Hydrology

A small stream, Callow Brook, is recorded approximately 275m east of the site, and runs broadly parallel to the eastern boundary of the site, orientated north/north-east. On approach to Dry Drayton, Callow Brook flows east along Madingley Road and joins Beck Brook c. 1km east.

Several land drains and unnamed valley streams are recorded within 500m of the site, typically along field boundaries.

Within Dry Drayton, several small ponds are present c. 20 - 50m from the site, with further ponds present within the wider area. These ponds may potentially be associated with historic sand pits within the Oadby Member.

The Envirocheck Report shows that the site is not at risk of flooding from rivers or the sea. Only minor and discrete areas along the site are shown to be at a low risk of flooding from surface water. In the surrounding area, areas at risk broadly correlate with the land drains and stream valleys.

The Envirocheck Report also records that there is limited potential for groundwater flooding to occur in the vast majority of the site, with an area in the southern end of the site near Scotland Farm Roundabout having potential for groundwater flooding of property situated below ground level.

4.8.3 Environmental Records

4.8.3.1 Soil Geochemistry

The maximum recorded concentrations of chemical within the soils at this Zone and in the immediate surrounding area, as reported in the Landmark Envirocheck Report, are presented in Table 4.66.

Chemical	Concentration (mg/kg)
Arsenic	15 – 25
Cadmium	< 1.8
Chromium	60 – 120
Lead	<100 – 200
Nickel	30 – 45

Table 4.66: Summary of soil geochemistry – Zone 8

A slightly greater concentration of Lead is recorded around Dry Drayton, with the remaining range of concentrations broadly representing the presence of the Oadby Member.

4.8.3.2 Groundwater and Surface Water Abstraction

The Envirocheck Report records no groundwater or surface water abstractions within 500m of the site.

4.8.3.3 Discharge Consents

A summary of the discharge consents within approximately 250m of Zone 8, as reported in the Landmark Envirocheck Report, can be found in Table 4.67.

Table 4.67: Summary of discharge consents – Zone 8

Name	Eastings	Northings	Distance / Compass Direction	Discharge Type	Receiving Body
Bushel & Co Ltd	536900	260460	160m NW (Ch. 2250)	Sewage Discharges - Final/Treated Effluent	Tributary Callow Brook

4.8.3.4 Enforcement and Prohibition Notices

The Landmark Envirocheck Report does not indicate any records of enforcement and prohibition notices within approximately 500m of route Zone 8.

4.8.3.5 Pollution Incidents to Controlled Waters

The Landmark Envirocheck Report records one pollution incident to controlled waters within approximately 500m of route Zone 8, summarised in Table 4.68.

Table 4.68: Summary of pollution incidents to controlled waters – Zone 8

Туре	Eastings	Northin gs	Distance / Compass Direction	Chainage	Pollutant	Receiving Body
Private Sewage (Non-PLC): Sewage Treatment Works	536800	260300	190m, W	Ch. 0	Sewage – Treated Effluent	Freshwater Stream / River

4.8.3.6 BGS Mineral Sites

The Landmark Envirocheck Report records no BGS mineral sites within 500m of Zone 8.

4.8.3.7 Waste Activities

The Landmark Envirocheck Report records one licensed waste management facility and one registered waste transfer site within 500m of Zone 8, summarised in Table 4.69.

Table 4.69: Summary of waste activities - Zone 8

Туре	Operator Name	Category	Eastings	Northings	Chainage	Distance / Compass Direction	Authorised Waste
Licensed Waste Management Facility	Richard Van George Jupp	Household, Commercial And Industrial Transfer Stations	536500	259700	Ch. 0	425m SE	-
Registered Waste Transfer Site	Richard Van George Jupp	Transfer	536420	259700	Ch. 0	480m, SE	Cambs Cat 1, 2a,2B: (Inert, Household,

Туре	Operator Name	Category	Eastings	Northings	Chainage	Distance / Compass Direction	Authorised Waste
							Demolition, some Contam)

A summary of the potentially infilled land within approximately 500m of Zone 8, as reported in the Landmark Envirocheck Report, can be found in Table 4.70.

Table 4.70: Summa	ry of	potentially	infilled	land – Zone 8
-------------------	-------	-------------	----------	---------------

Туре	Use	Eastings	Northings	Chainage	Distance / Compass Direction
Water	Unknown Filled Ground (Pond, marsh, river, stream, dock etc)	537753	261803	Ch. 1750	90m, SE
Water	Unknown Filled Ground (Pond, marsh, river, stream, dock etc)	537833	261922	Ch. 1900	100m, SE
Water	Unknown Filled Ground (Pond, marsh, river, stream, dock etc)	537901	262370	Ch. 2250	230m, N
Water	Unknown Filled Ground (Pond, marsh, river, stream, dock etc)	538081	262337	Ch. 2250	280m, NE

A summary of the extractive land uses or potential excavations from 1950 – 1980 within approximately 500m of the site from the Landmark Envirocheck Report for Zone 8 are presented in Table 4.71.

Table 4.71: Summary of extractive industries or potential excavations from 1950 – 19	980 –
Zone 8	

Use	Easting	Northing	Chainage	Distance / Compass Direction
Pond	537159	260101	Ch. 0	225m, SE
Pond	537763	262012	Ch. 1900	7m, W
Pond	537794	262095	Ch. 2000	36m, NW
Pond	537969	262163	Ch. 2250	88m, NE

4.8.3.8 Hazardous Substances

No Hazardous Substances are recorded within 500m of this Zone within the Landmark Envirocheck Report.

4.8.3.9 Registered Radioactive Substances

The Landmark Envirocheck Report records no registered radioactive substances within 500m of route Zone 8.

4.8.3.10 Contemporary Trade Directory Entries

A summary of the recorded contemporary trade directory entries within approximately 250m of the Zone, as reported in the Landmark Envirocheck Report, can be found in Table 4.72. Several of these are present within Dry Drayton Industries, a business park located adjacent to the east of this Zone, and Scotland Farm.

Name	Easting	Northing	Chainage	Distance / Compass Direction	Classificati on	Status
Justin Hawkes Conservation	537732	262168	Ch. 2150	130m, NW	Art Restoration & Picture Cleaning	Active
Green Solar World Ltd	537034	260326	Ch. 250	6m SE	Electricity Generating & Distributing Equipment	Active
Eves Home Serve	537034	260326	Ch. 250	6m SE	Commercial Cleaning Services	Inactive
Eve's Homeserve & Commercial Ltd	537034	260326	Ch. 250	6m SE	Laundries & Launderettes	Inactive
Admiral Kleencare	537055	260342	Ch. 250	20m SE	Carpet, Curtain & Upholstery Cleaners	Inactive
Outside In (Cambridge) Ltd	537053	260322	Ch. 250	25m SE	Medical Equipment Manufacturer s	Inactive
Copytrax Technologies Uk Ltd	537043	260289	Ch. 250	28m SE	Manufacturer s	Inactive
Hilton Heating Components	537066	260316	Ch. 250	39m SE	Central Heating Supplies & Equipment	Active
Thecdproduce r.Org	537063	260307	Ch. 250	39m SE	Screen Process Printers	Inactive
Shelford Golf Co	537052	260277	Ch. 250	40m SE	Printers	Inactive
Ice Components	537101 260329	537101 260329	Ch. 250	67m SE	Electronic Component Manufacturer s & Distributors	Inactive

Table 4.72: Summary of contemporary trade directory entries – Zone 8
--

Name	Easting	Northing	Chainage	Distance / Compass Direction	Classificati on	Status
Print Absolute	537082	260280	Ch. 250	67m SE	Office Equipment Servicing & Maintenance	Active
Autoclean Services Ltd	537053	260260	Ch. 200	47m SE	Commercial Cleaning Services	Inactive
Sharpe Business System	537061	260258	Ch. 200	56m SE	Photocopiers	Active
T M C Specialist Cleaning Ltd	537072	260253	Ch. 200	68m SE	Carpet, Curtain & Upholstery Cleaners	Active
Eve's Homeserve	536793	260241	Ch. 200	149m E	Cleaning Services - Domestic	Inactive
Eve's Homeserve & Commercial	536793	260241	Ch. 200	149m E	Cleaning Services - Domestic	Inactive
Cambio Ltd	536802	260295	Ch. 200	185m, W	Chemicals & Allied Products	Inactive

4.8.3.11 Ecological Designation of Land and Other Sensitive Land Uses

This Zone is located along the perimeter of an area of Adopted Green Belt, which extends to the east of the site towards Cambridge, and also is within a Nitrate Vulnerable Zone.

No further sensitive land uses are recorded within 500m of the site within the Landmark Envirocheck Report.

4.8.3.12 Archaeology and Heritage

Please refer to Section 3.6 for further details.

4.8.3.13 Historical Development

A summary of the historical development of Zone 8 and the surrounding area within 500m is detailed in Table 4.73, highlighting the major changes observed in the historical maps.

It should be noted that where no significant changes and/or no coverage of the site or its surrounding area is provided, these records have not been included in the summary below.

Zone 8 and the immediate surrounding area are covered in Slice B (B8, B12 and B16), C (C5, C9, C13 and C14) and E (E1, E2, E5 and E6) from Envirocheck Report 1.

Year of Publication	Scale	On-site	Off-site			
1886 - 1887	1:10,560 1:2,500	Scotland Road exists in a similar position to its current route. The land surrounding	Scotland Farm comprising of farm buildings, a sluice, pond and spring are present from c. 100m west of the site at Ch. 100.			
		the road is predominantly agricultural land.	A track runs north-west/south-east next to Ch. 0. Severa further tracks are present adjacent to the route at the margins of agricultural fields.			
			Wooded areas, two small ponds and unlabelled tracks/drains are indicated in the north-eastern side of the Zone (Ch. 1500 – 1900).			
			Village of Dry Drayton to the north of the route (Ch. 200 – 2200). Notable structures such as a rectory, public house, pond, farm, woodland and houses within 250m of the route boundary.			
			A Reservoir (Dry Drayton Parish Council) is labelled c. 400m east of Ch 1800.			
1902	1:10,560	No significant change.	Small changes to Scotland Farm including expansion of small farm buildings.			
	1:2,500		Ash Plantation, a thin strip of woodland, is labelled c. 250m west of Scotland Road (Ch. 600).			
1926 - 1927	1:10,560	No significant change.	Small changes to Scotland Farm - removal of small farm buildings.			
	1:2,500		New Farm constructed directly adjacent to the site on the eastern side of Scotland Road, along with some residential dwellings (Ch $0 - 350$)			
			A pump house is labelled to the north of Scotland Farm c. 150m west (Ch. 150).			
			A small building is indicated c. 20m west of Ch. 100.			
			A possible Clay Pit is recorded east of New Farm at approximate Ch 150.			
1938 - 1953	1:10,560	No significant change.	No significant change.			
1958	1:10,000	No significant change.	No significant change.			
1976 – 1977	1:2,500	No significant change.	Drains are now labelled on agricultural land, orientated parallel to the southern end of Scotland Road, within 500m of the zone.			
			Small expansion of building on Scotland Farm; two tanks are also labelled on the site.			
			Significant residential expansion of Dry Drayton to the north of the zone.			

Table 4.73: Historic Map Review – Zone 8

Year of Publication	Scale	On-site	Off-site No significant change.				
1979	1:2,500	Route of Scotland Road altered slightly at junction with newly constructed roundabout (Wellington Way Roundabout) to the south (Zone 3).					
1980 – 1983	1:10,000	No significant change.	Two new tracks labelled (orientated north-west/south- east from approximate Ch. 150 and Ch. 400).				
	1.2,500		Single dwelling added to the north of New Farm (Ch. 380).				
			Drain network labelled to the east of New Farm, connected to Callow Brook further east.				
			A roundabout and new junction are present from c. 450m south of Ch. 0.				
1988	1:2,500	No significant change	Dry Drayton continuing to expand, no significant change to historical buildings in the village. Electrical Substation labelled. A cutting is labelled on the western side of the altered Scotland Road route next to Wellington Way Roundabout, c. 200m south of Ch. 0.				
1994	1:2,500	No significant change.	No significant changes at Scotland Farm. A new unnamed track leads north-west from the farm and ends in the agricultural land.				
2000	1:10,000	No significant change.	New Farm now labelled Dry Drayton Industries.				
	1:2,500						
2006	1:10,000	No significant change.	Additional structure present within the Scotland Farm area c_{180m} west of the site (Ch. 0)				
	1:2,500						
2020	1:10,000	No significant change.	A further roundabout and the A428 is now present with associated earthworks (cutting/embankments) orientated east to west from c. 270m south of Ch 0.				
	1:2,500						
			A large rectangular structure (labelled Electrical Substation) and small circular structures are now present adjacent to Scotland Farm c. 300m west of Ch 0.				

4.8.3.14 Contaminants of Concern

Based on information obtained on the site and surrounding area and the Department for Environment (1995) Industry Profiles, limited contaminants of concern are likely to be present. Those potentially present within 250m of the site have been summarised in Table 4.74

Mott MacDonald is not insured to advise on risk arising from asbestos or radioactive substances, and therefore will not give advice relating to risks associated with them. It is recommended that a specialist is consulted regarding mitigation or remedial measures required relating to the presence of asbestos and/or radioactive substances at the site.

Potential Contaminant Source	Location	Contaminants of Concern				
Agricultural land / farms	Agricultural land to the east and west of Scotland Road.	Metals, nitr-compounds from organic waste and fertilisers, fuel oil, pesticides, animal slurry and silage effluent				
Highways / roads	OBC alignment runs along route of Scotland Road. A428, roundabouts and St Neots Road immediately to the south of Ch. 0.	Organic compounds e.g. petrol, diesel, MTBE, hydrocarbons; heavy metals.				
Contemporary trade	Mainly within 250m of Ch.	Cleaning / launderette				
directory entries	200 – 250. One entry 130m NW of Ch. 2150.	Oils, acids, soaps, polycyclic aromatic hydrocarbons, triglyceride, phenol, alkylbenzene sulphonates, sodium hydroxide, sodium tripolyphosphate, potassium hydroxide, sodium chloride solution, titanium dioxide, dyes, antioxidants, sulphate, sodium/magnesium silicate, aluminium borate, magnesium phosphate, sodium carbonate, zinc oxide, asbestos, hydrocarbon fuels.				
		Electronic equipment Metals and metalloids, asbestos, polychlorinated biphenyls, inorganic compounds, acids, alkalis, organic solvents, halogenated compounds and minoral oils				
		Printers				
		Inorganic pigments, organic pigments, organic dyes, asbestos, barium sulphate, hydrocarbon resins, oils, phenol formaldehyde, amino compounds, alkyds, organic solvents, alcohols and glycol ethers, ketones, esters, dimethylformamide, 1-nitropropane, plasticisers, lubricants, driers and catalysts.				
		Chemical products				
		Solvents, inorganic compounds, organic compounds (e.g. benzene, toluene, xylenes, phenols, cresols, acids, polycyclic aromatic hydrocarbons, halogenated compounds, organo-sulphur and organo- nitrogen compounds), metals and metalloids, fuel, asbestos, dioxins, polychlorinated biphenyls.				
Extractive industries / potentially infilled land	Mainly within 250m of Ch. 1750 – 2250. One entry 225m SE of Ch. 0.	Unknown infill material (potential source of ground gas and organic contaminants)				
Electrical substation	Scotland Farm	Metals and metalloids, polychlorinated biphenyls, inorganic compounds, acids, alkalis, organic solvents, halogenated compounds and mineral oils.				

Table 4.74: Contaminants of concern - Zone 8

4.8.4 Utilities

A high-level review of the main C2 utility return information indicates that a medium pressure gas main and water utility run parallel to the west and east of Scotland Road (respectively) for approximately the entire length of the zone. A high voltage cable runs adjacent to the water utility for the majority of the zone, from approximate Ch 400. It is understood that a series of drawings recording the approximate location of the C2 utility returns are being produced by Mott MacDonald, and these should be referred to for further information.

4.9 Summary of Route Option Desk Study Findings

This section presents an overall summary of the key desk study findings for Route Zones 1 - 8. This allows comparison between each of these zones and therefore comparison of the areas in terms of the geotechnical and geo-environmental risks that may be encountered.

4.9.1 Site Geology

A comparison of the site geology for Route Zones 1 - 8 is presented in Table 4.75. It should be noted that although no Artificial Ground is recorded on the BGS mapping, it is possible this may be present on-site due to the developed nature of some areas of the site and the adjacent infrastructure / earthworks associated with the A428 / M11.

Route Zone	Artificial Ground	Superficial Geology	Bedrock Geology	
Zone 1	None indicated	Oadby Member	Kimmeridge Clay Formation	
			Woburn Sands Formation	
Zone 2	None indicated	Oadby Member	Woburn Sands Formation Gault Formation	
Zone 3	None indicated		Gault Formation	
Zone 4	None indicated	Oadby Member (Partial coverage)	Gault Formation West Melbury Marly Chalk Formation	
Zone 5	None indicated	None indicated	Gault Formation	
Zone 6	None indicated	None indicated	Gault Formation	
Zone 7	None indicated	Oadby Member	Gault Formation	
Zone 8	None indicated	Oadby Member	Gault Formation	

Table 4.75: Comparison of site Geology – Route Zones

4.9.2 Hydrogeology and Hydrology

4.9.2.1 Hydrogeology

A comparison of the hydrogeology for Route Zones 1 – 8 is presented in Table 4.76.

Table 4.76: Comparison of site Hydrogeology – Route Zones

Route Zone	Summary of Hydrogeology					
Zone 1	 Oadby Member is classified as a Secondary Undifferentiated Aquifer with medium groundwater vulnerability. 					
	 Kimmeridge Clay to the western area is classified as Unproductive Strata. 					
	 Woburn Sands Formation is classified as a Principal Aquifer. 					
	 Groundwater was encountered in the Oadby Member between 1.7 – 17.7m bgl. 					
Zone 2	 Oadby Member is classified as a Secondary Undifferentiated Aquifer with medium groundwater vulnerability. 					
	• Woburn Sands Formation in the western area of the site is classified as a Principal Aquifer.					
	 Gault Formation in the eastern area is classified as Unproductive strata. 					
	 Groundwater was encountered between 0.35 – 1.06m bgl within the Oadby member. 					
Zone 3	 Oadby Member is classified as a Secondary Undifferentiated Aquifer with medium groundwater vulnerability. 					
	 Gault Formation is classified as Unproductive strata. 					
	 West Melbury Marly Chalk Formation to the east is classified as a Principal Aquifer 					
	 Groundwater was recorded in the Oadby Member between 1.76 – 17m bgl. 					

Summary of Hydrogeology
 Oadby Member is classified as a Secondary Undifferentiated Aquifer with medium groundwater vulnerability. West Melbury Marly Chalk Formation is classified as a Principal Aquifer
Gault Formation present east and west of the site is classified as Unproductive strata
 No superficial deposits recorded in this zone.
 Gault Formation is classified as Unproductive strata.
 West Melbury Marly Chalk Formation to the west is classified as a Principal Aquifer.
 Groundwater seepage recorded in the Gault Formation at 1.7m bgl.
 No superficial deposits recorded in this zone. River Terrace Deposits c. 100m SE of Ch 11400 are classified as Secondary A Aquifer, however these are not anticipated to be encountered.
 Gault Formation is classified as Unproductive strata.
 Groundwater recorded in the Gault Formation at 1.2m bgl
 Oadby Member is classified as a Secondary Undifferentiated Aquifer with medium groundwater vulnerability.
 Gault Formation is classified as Unproductive strata.
 Groundwater recorded in the Oadby Member at 6.4m bgl.
 Oadby Member is classified as a Secondary Undifferentiated Aquifer with medium groundwater vulnerability.
 Gault Formation is classified as Unproductive strata.
 West Melbury Marly Chalk Formation to the east is classified as a Principal Aquifer.
Groundwater recorded in the Oadby Member at 6.4m bgl.

4.9.2.2 Hydrology

A comparison of the hydrology for Route Zones 1 - 8 is presented in Table 4.77. It should be noted that in general, a series of land drains are recorded within the wider area surrounding the site and this has not been presented in the below comparison.

Table 4.77: Comparison of site Hydrogeology – Route Zones

Route Zone	Summary of Hydrogeology
Zone 1	 Sirius Lake present 650m SW of Ch 0. Two small ponds c. 315 / 120m south of the route along Sterling Way No risk of flooding from surface water for the majority of the site footprint Potential for groundwater flooding of property below ground level across the western half of the zone, limited potential for this to occur within the eastern half of the site.
Zone 2	 A number of drains are recorded between Ch 200 – 2450 adjacent to the A428. Largely no risk of flooding from surface water for the majority of the site footprint. There is a medium/high risk of surface water flooding on Wellington Way. Limited potential for groundwater flooding of property below ground level (Ch 2000 – 2300), with potential for it to occur between Ch 2300 – 2750.
Zone 3	 Extensive network of drains recorded within/adjacent to the site between Ch 2750 – 5700. Callow brook crosses the site at Ch 4200 orientated north-east to south-west Two balancing ponds present directly adjacent to the route at Ch 3100 and Ch 4000 Largely no risk of flooding from surface water for the majority of the site footprint. However, there are bands of high risk at Ch 3000 – 3500, and a low to medium risk at Ch 5700. Potential for groundwater flooding to occur at surface at the chainages mentioned above. The remainder of the zone has potential for groundwater flooding to occur in property below ground level
Zone 4	 Drains cross the route at Ch. 5700 and 7350). The drains to the south feed into Bin Brook c. 580m south of Ch. 8100.

Route Zone	Summary of Hydrogeology
	 Springs located in Coton area associated with the underlying Chalk (Coton and Whitwell Farm).
	• Low risk of surface water flooding along the route, with bands of higher risk where the drains cross the route at the chainages mentioned above.
	 Limited potential for groundwater flooding to occur across the majority of the site, but potential for groundwater flooding below ground level at Ch 5700
Zone 5	A drain crosses the route at Ch. 9100.
	 The drains to the south of the site feed into Bin Brook (c. 700m south of Ch. 8700).
	 Very low risk of surface water flooding to the site, with pockets of low – high risk crossing the route between Ch 86700 – 9100.
	 Limited potential for groundwater flooding to occur between Ch 867000 – 9000, with no reported risk of groundwater flooding for the remainder of the zone
Zone 6	The River Cam is present c. 1.1km east of the site.
	• The West Cambridge Canal, orientated east to west, enters the site at approximate Ch 10150 within the West Cambridge Site (Cambridge University). This appears to run parallel to the route until approximate Ch. 10750 where it enters a culvert and is directed east, towards the River Cam. Further small drains appear to run broadly parallel to this and drain the surrounding area.
	 Two ponds are located directly adjacent to the site between approximate Ch. 10575 – 10775.
	 Bin Brook passes c. 60m south-east of the site at Ch 11400, orientated north-east to south- west and joins the River Cam east of the site.
	 No risk of flooding from Rivers or the Sea within the site footprint.
	 Minor areas are recorded at low risk of surface water flooding along Charles Babbage Road (Ch 9450 – 10050). Areas adjacent to the ponds and Cambridge West Canal are low to high risk (Ch 10150 – 10750).
	 No reported risk of groundwater flooding to occur in the site. Areas 40m SE of Ch 11400 have potential for groundwater flooding to occur at surface.
Zone 7	A land drain is also recorded c. 15m north-east of the site.
	 Callow Brook is recorded approximately 80m south-east of the site.
	• Only a minor area along the eastern site boundary is at low risk of surface water flooding. Areas at risk in the wider area broadly follow the valley of Callow Brook or the land drains.
	 Potential for groundwater flooding of property below ground level to occur in the majority of the site, and potential for this to occur at surface along the eastern boundary.
Zone 8	Callow Brook recorded approximately 275m east running parallel to the site
	 Several small ponds recorded within Dry Drayton (c. 20 – 50m from the site).
	 Only minor and discrete areas along the site are at low risk of flooding from surface water.
	 Limited potential for groundwater flooding to occur across the majority of the site. Potential for groundwater flooding of property below ground level around Ch 0 near Scotland Farm.

4.9.3 Environmental Records

A comparison of the environmental records within c. 500m of Route Zones 1 - 8 are presented in Table 4.78.

Environmental Records (No.)		Zone 1	Zone 2	Zone 3	Zone 4	Zone 5	Zone 6	Zone 7	Zone 8
Soil Geochemistry	Arsenic	15 – 25	15 – 25	15 – 25	<15 – 25	15 – 25	<15	15 – 25	15 – 25
Concentrations (mg/kg)	Cadmium	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8
	Chromium	60 - 90	60 – 120	60 – 120	60 - 90	60 - 90	60 - 90	60 – 120	60 – 120
	Lead	<100	<100	<100	<100	<100	<100	<100	<100 - 120
	Nickel	30 - 45	30 - 45	30 - 45	30 - 60	30 - 60	30 - 45	30 - 45	30 - 45
Groundwater and Su Abstraction	urface Water	N/A	N/A	N/A	1	1	3	N/A	N/A
Discharge Consents		7	7	10	11	8	4	1	1
Enforcement and Pro Notices	ohibition	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Pollution Incidents to Waters	Controlled	2	3	1	5	1	9	1	1
BGS Mineral Sites		N/A	N/A	N/A	1	N/A	N/A	N/A	N/A
Waste Activities		1	N/A	1	1	N/A	N/A	1	10
Hazardous Substand	ces	1	1	N/A	N/A	N/A	1	N/A	N/A
Registered Radioact Substances	ive	N/A	N/A	N/A	N/A	12	18	N/A	N/A
Contemporary Trade	e Directories	9	10	29	13	6	3	23	18
Sensitive Land Uses	;	1	1	2	4	2	2	2	2

Table 4.78: Summary of Environmental Records
5 Geotechnical Risk Assessment

In this section the geotechnical risks have been identified and assessed is based on the information presented for the route options in Section 4 and for the Travel Hub location options in Section 5. The overarching geotechnical risk register for the entire scheme can be found in Appendix F.

The section below presents a preliminary assessment of the geotechnical risks associated with the indicated underlying strata; the risk of geohazards within the site footprint; any geotechnical risks associated with proposes structures and embankments; and, any additional risks within the route zones and Travel Hub sites.

5.1 Preliminary Geotechnical Assessment

In order to understand the potential geotechnical risks associated with the in-situ geology, a preliminary geotechnical assessment has been undertaken. What follows is an overview of the geotechnical risks associated with each of the units indicated along the route / route options, and underlying the footprint of the location for the Park and Ride.

Table 5.1 outlines the geological units which are present within each of the route zones, along with the distance and percentage where each of the units occurs at or close to surface.

It should be noted that although the Kimmeridge Clay and Woburn Sands Formation are recorded beneath the site footprint, these deposits are not expected to be encountered during the proposed works due to the significant thickness of the Oadby Member expected in the west of the site.

Although Made Ground is not recorded on BGS mapping, it is possible that this may be encountered across the site in variable thickness due to the developed nature of some areas of the site, particularly in Zones 1 - 5 where the route runs adjacent to the A428 and major structures.

Route Area	Unit	Distance/Area of route area where unit occurs at / close to surface*	Percentage of route area where unit occurs at / close to surface
Zone 1	Oadby Member	2000m (Entire Zone)	100%
Zone 2	Oadby Member	750m (Entire Zone)	100%
Zone 3	Oadby Member	2950m (Entire Zone)	100%
Zone 4	Oadby Member	2350m	85.2%
	Chalk	440m	14.8%
Zone 5	Gault Formation	750m (Entire Zone)	100%
Zone 6	Gault Formation	1950m (Entire Zone)	100%
Zone 7 (Park and Ride)	Oadby Member	0.07km ²	100%
Zone 8 (NMU)	Oadby Member	2250m (Entire Zone)	100%

Table 5.1: Presence of strata within each route zone

*Values presented are approximate only

5.1.1 Artificial Ground

The 1:50,000 scale BGS mapping does not record Artificial Ground within the site footprint or immediate surrounding area. It should be noted that artificial deposits of less than 2.5m thickness are not recorded on the 1:50,000 BGS mapping.

However, it is likely that artificial ground will be encountered along the scheme associated with the developed state of some areas and in particularly associated with the adjacent roads including the A428 and M11, with areas of significant earthworks identified from historic mapping records.

Below is a geotechnical assessment of the potential risks that could be encountered:

It is possible that significant thicknesses of this material may be encountered;

- The composition of the material may be variable;
- Contamination may be present within the material;
- It may not be suitable as a founding stratum as it could be of low strength and highly
- compressible;
- The possible presence of organic material may lead to long-term settlement;
- Due to variable density and material which may be encountered, differential settlement may occur both within the unit and in any surrounding units;
- Due to the variability of the deposit, it may have variable permeability;
- There is potential for elevated or perched groundwater within these deposits;
- There is a potential risk for concrete to be attacked by aggressive ground conditions;
- It is possible that ground gas could be generated by the deposits; and,
- Excavations or slopes in this material may be unstable.

5.1.2 Oadby Member (Wolston Glacigenic Formation)

The Oadby Member is likely to be encountered at surface across the majority of the site and is generally described as a firm to very stiff silty gravelly clay with occasional beds of sand/gravel and occasional cobbles/boulders. This unit thins to the east and is not recorded in Zone 5 and 6. The unit may be up to 20 - 25m in thickness.

Below is a geotechnical assessment of the potential risks that could be encountered:

- It is possible that variable founding and settlement conditions may occur due to the variable lithology/ nature of this deposit;
- This deposit may contain periglacial features including for example shallow shear surfaces;
- The strength and compressibility of this deposit may vary with depth;
- The unit may have dilatancy and be sensitive to moisture content change; therefore, there is a risk that ground conditions on site may deteriorate if the material becomes wet;
- Lenses and/or bands of sands and gravels possibly present may lead to perched water being present;
- This unit has the potential to contain cobbles and boulders which may act as obstructions for foundations; and,
- It is possible that sulphate bearing minerals may be present within the unit leading to a potential risk of buried structural elements to be attacked by aggressive ground.

5.1.3 Kimmeridge Clay

The Kimmeridge Clay is likely to be encountered beneath the Oadby Member east of Cambourne. No historic borehole information is available within close proximity of the site which encounters this material, but this unit has been described by the BGS as a dark grey clay / calcareous fossiliferous clay with thin beds of oil shale, and tabular beds and septarian nodules of argillaceous limestone (cementstone).

This deposit is considered unlikely to be encountered based on the currently proposed works Therefore, geotechnical risks have not been presented in this section. Should the proposed works change, this section should be updated accordingly.

5.1.4 Woburn Sands Formation

The Woburn Sands Formation is likely to be encountered beneath the Oadby Member between Cambourne and Childerley Gate / Highfields Caldecote. This deposit was not encountered in historical boreholes within the immediate surrounding area of the site, but can be described as a fossiliferous loosely cemented glauconitic sandstone / pebbly sand with local thin beds of silty clay and phosphatic nodules/beds at its base. This unit may be up to 12m in thickness.

This deposit is considered unlikely to be encountered based on the currently proposed works due to the significant thickness of the overlying Oadby Member in this area of the site. Therefore, geotechnical risks have not been presented in this section. Should the proposed works change, this section should be updated accordingly.

5.1.5 Gault Formation

The Gault Formation is likely to be encountered beneath the Oadby Member between Childerley Gate / Highfields Caldecote to c. 250m west of Long Road, and again c. 300m east of Coton for the remainder of the site east of this. This unit was encountered in historic boreholes within the immediate surrounding area of the site and was described as a firm to stiff slightly to very sandy fissured silty clay with occasional gravel and selenite crystals. This unit may be up to 40m in thickness.

Below is a geotechnical assessment of the potential risks that could be encountered:

- The unit is likely to be of moderate to high strength and have moderate to low compressibility, however this may vary;
- This deposit may contain periglacial features including for example shallow shear surfaces;
- The strength and compressibility of this deposit may vary with depth;
- The unit has a potential to be affected by shrink/swell;
- This unit may contain pyritic nodules, and there is a potential risk that concrete may be attacked by aggressive ground conditions;
- The unit has the potential to contain limestone bands or nodules which may act as obstructions for foundations; and,
- Perched groundwater may be encountered within beds of silt/ fine-grained sand within the unit.

5.1.6 West Melbury Marly Chalk Formation

The West Melbury Marly Chalk Formation is likely to be encountered along an area c. 440m long north of Coton in the eastern half of the site.

This unit was encountered in historic boreholes within the immediate surrounding area of the site, and was described as a marly chalk with hard bands, or clayey / hard block chalk which was locally disturbed by coprolite digging. This unit may be up to 15 - 25m in thickness.

Below is a geotechnical assessment of the potential risks that could be encountered:

- Chalk units are highly susceptible to frost; therefore, foundations and pavements may be liable to frost heave;
- In the upper weathered zone, it is possible that this material could be of low strength or have variable density characteristics;
- It is possible that differential settlement may occur as a result of the likely variable weathering profile;
- Carbonate rocks such as Chalk are susceptible to dissolution and the formation of karst, e.g. sink holes, cave systems and tapering pipes;
- The subsidence or collapse of material above dissolution derived voids may result in an infill
 of any overlying deposits. These features can vary in size and will result in variable
 geotechnical conditions across the site;
- Chalk has the potential to contain flint or cobbles which may act as obstructions for foundations; and,
- It is possible that sulphate bearing minerals/nodules may be present within the West Melbury Marly Chalk Formation, leading to a potential risk of buried structural elements to be attacked by aggressive ground.

5.1.7 Groundwater

Where encountered, groundwater was recorded as being between 1.76 - 17.8m bgl. This was predominantly encountered within the Oadby Member and is likely to be associated with the presence of perched water.

Limited BGS borehole records which indicated the presence of groundwater were recorded proximal to the site within the West Melbury Marly Chalk Formation and the Gault Formation.

For preliminary design, it is recommended that groundwater is assumed as being 1m below ground level to remain conservative subject to the confirmation during a site-specific ground investigation.

5.1.8 Drainage

A drainage strategy is currently under development by Mott MacDonald and is investigating drainage options across the scheme, with the drainage solutions to be installed along the route to be confirmed. There is potential for sustainable drainage systems to be utilised including infiltration, soakaways, filter strips, filter drains and swales.

The Oadby Member overlies the majority of the site footprint (Zones 1 - 4, 7 8). Based on the historic engineering log descriptions it is unlikely to form a suitable medium for infiltration drainage. The West Melbury Marly Chalk Formation is likely to be encountered in some areas of Zone 4, and this deposit could potentially form a suitable medium for infiltration depending on the thickness of the zone of weathered material. The Gault Formation, recorded in Zones 5 and 6, is unlikely to comprise a suitable medium for infiltration drainage based on the review of available BGS information.

It is recommended that the suitability of the above deposits for infiltration drainage is confirmed following completion of site-specific ground investigation and testing.

5.2 Geotechnical Hazards

The Envirocheck Report presents the locations and the hazard potential of geological hazards along the length of the overall scheme footprint.

Table 5.2 presents the hazard potential of geological hazards for the route zones within c. 250m of the centreline.

Route Zone	Geotechnical Hazard	Hazard Potential	Associated Strata
Zone 1, Zone 2, Zone 3, Zone 7	Collapsible Ground	Very Low	Oadby Member
	Compressible Ground	Very Low	Oadby Member
	Ground Dissolution	No Hazard	Oadby Member
	Landslide	Very Low	Oadby Member
	Running Sand	Very Low	Oadby Member
	Shrinking or swelling clay	Low	Oadby Member
Zone 4	Collapsible Ground	Very Low	Oadby Member
	Compressible Ground	Very Low	Oadby Member
	Ground Dissolution	Very Low	West Melbury Marly Chalk Formation
	Landslide	Very Low to Low	Oadby Member / West Melbury Marly Chalk Formation
	Running Sand	Very Low	Oadby Member
		No Hazard	West Melbury Marly Chalk Formation
	Shrinking or swelling clay	Low No Hazard	Oadby Member West Melbury Marly Chalk Formation
Zone 5	Collapsible Ground	Very Low	Gault Formation
	Compressible Ground	Very Low	Gault Formation
	Ground Dissolution	No Hazard	Gault Formation
	Landslide	Very Low	Gault Formation
	Running Sand	No hazard	Gault Formation
	Shrinking or swelling clay	Moderate	Gault Formation
Zone 6	Collapsible Ground	Very Low	Gault Formation
	Compressible Ground	Very Low	Gault Formation
	Ground Dissolution	No Hazard	Gault Formation
	Landslide	Very Low	Gault Formation
	Running Sand	No Hazard Very Low	Gault Formation River Terrace Deposits
	Shrinking or swelling clay	Moderate	Gault Formation / River Terrace Deposits
Zone 8	Collapsible Ground	Very Low	Oadby Member
	Compressible Ground	No Hazard	Oadby Member
	Ground Dissolution	Very Low	West Melbury Marly Chalk Formation
		N/A	Oadby Member

Table 5.2: Summary of Geotechnical Hazards for Route Zones

Route Zone	Geotechnical Hazard	Hazard Potential	Associated Strata
	Landslide	Very Low	Oadby Member / West Melbury Marly Chalk Formation
	Running Sand	Very Low	Oadby Member
	Shrinking or swelling clay	Low	Oadby Member
		Moderate	Gault Formation

Source: Landmark Envirocheck Report

5.3 Geotechnical Risks Associated with Earthworks

Table 5.3 summarises the proposed earthworks over c. 0.5m in height along the various zones of the route, detailing the indicated founding strata and their associated high-level geotechnical risks, along with the likely foundation method that would be utilised. For further details of the earthworks proposed along the routes, please refer to Section 4.

It should be noted that some areas have limited topographic survey coverage and/or LiDAR information (e.g. Zone 4 - 5), and as a result not necessarily all of the potential embankment/cuttings will be listed in the below table. Upon completion of a full site topographic survey, this section should be updated accordingly.

No significant earthworks are currently expected in Zone 6 - 8, therefore these are not assessed in the below table. However, high-level risks associated with the Gault Formation (Zone 6) and Oadby Member (Zone 7, 8) are expected to apply to these zones.

Table 5.3: Geotechnical Risks Associated with Earthworks

Route Zone	Earthwork Type	Start Chainage	End Chainage	Founding Unit	Possible Foundation Solutions	High Level Geotechnical Risks
Route Zone 1	Embankment	100 980	250 1300	Oadby Member	Soft/loose spots may be encountered below embankment founding level which may require excavation and replacement / ground improvement	The risk of founding an embankment on the Oadby Member are that it is likely to be a variable deposit leading to differential and long-term consolidation settlement, and is likely to be moisture sensitive therefore ground conditions may deteriorate if the material becomes wet. Periglacial conditions may have also arisen in shallow shear surfaces which may cause slope instability.
	At Grade	0 400 880	150 480 980	Oadby Member	Pavement likely to be founded onto Oadby Member	The Oadby Member is likely to be a variable deposit leading to differential and long-term consolidation settlement and is likely to be moisture sensitive therefore ground conditions may deteriorate if the material becomes wet.

Route Zone	Earthwork Type	Start Chainage	End Chainage	Founding Unit	Possible Foundation Solutions	High Level Geotechnical Risks
	Cutting	250 480 1300	400 880 2000	Oadby Member	Soft/loose spots may be encountered at sub-formation; therefore, excavation and replacement / ground improvement may be required	The risk of cuts within the Oadby Member are that obstructions such as boulders may be present. Periglacial conditions may have also arisen in shallow shear surfaces which may cause slope instability, as well as potential perched water in granular beds. The unit is likely to be sensitive to changes in moisture content which may lead to deterioration of the material if it becomes wet.
Route Zone 2	Embankment	2000	2380	Oadby Member	Soft/loose spots may be encountered below embankment founding level which may require excavation and replacement / ground improvement	The risk of founding an embankment on the Oadby Member are that it is likely to be a variable deposit leading to differential and long-term consolidation settlement, and is likely to be moisture sensitive therefore ground conditions may deteriorate if the material becomes wet. Periglacial conditions may have also arisen in shallow shear surfaces which may cause slope instability.
	Cutting	2380	2750	Oadby Member	Soft/loose spots may be encountered at sub-formation; therefore, excavation and replacement / ground improvement may be required	The risk of cuts within the Oadby Member are that obstructions such as boulders may be present. Periglacial conditions may have also arisen in shallow shear surfaces which may cause slope instability, as well as potential perched water in granular beds. The unit is likely to be sensitive to changes in moisture content which may lead to deterioration of the material if it becomes wet.
Route Zone 3	Embankment	2750 3810 4290 4400	3450 3820 4300 5500	Oadby Member	Soft/loose spots may be encountered below embankment founding level which may require excavation and replacement / ground improvement	The risk of founding an embankment on the Oadby Member are that it is likely to be a variable deposit leading to differential and long-term consolidation settlement, and is likely to be moisture sensitive

Route Zone	Earthwork Type	Start Chainage	End Chainage	Founding Unit	Possible Foundation Solutions	High Level Geotechnical Risks
		4975	5700			therefore ground conditions may deteriorate if the material becomes wet. Periglacial conditions may have also arisen in shallow shear surfaces which may cause slope instability.
	Cutting	3600 3860 4300 5550	3750 4290 4400 5700	Oadby Member	Soft/loose spots may be encountered at sub-formation; therefore, excavation and replacement / ground improvement may be required	The risk of cuts within the Oadby Member are that obstructions such as boulders may be present. Periglacial conditions may have also arisen in shallow shear surfaces which may cause slope instability, as well as potential perched water in granular beds. The unit is likely to be sensitive to changes in moisture content which may lead to deterioration of the material if it becomes wet.
Route Zone 4	Embankment	6300 7650 7530	6900 8060 7930	Oadby Member	Soft/loose spots may be encountered below embankment founding level which may require excavation and replacement / ground improvement	The risk of founding an embankment on the Oadby Member are that it is likely to be a variable deposit leading to differential and long-term consolidation settlement, and is likely to be moisture sensitive therefore ground conditions may deteriorate if the material becomes wet. Periglacial conditions may have also arisen in shallow shear surfaces which may cause slope instability.
	Embankment	8230	8670	Chalk	Likely to be founded onto Chalk assuming removal of any weathered material	The risks of founding an embankment on Chalk are that it is highly susceptible to frost and moisture ingress, which may lead to heave and deterioration of ground conditions. Dissolution features may be present which could lead to presence of low strength material, subsidence or excessive settlement, and weathered Chalk may be of variable density leading to differential settlement.

Route Zone	Earthwork Type	Start Chainage	End Chainage	Founding Unit	Possible Foundation Solutions	High Level Geotechnical Risks
						The risks of forming cuts within Chalk are that its sensitive to frost, weathered Chalk may be of low strength, and there is potential to encounter perched water.
	Cutting	6900 5700 8060	7400 6300 8150	Oadby Member	Soft/loose spots may be encountered at sub-formation; therefore, excavation and replacement / ground improvement may be required	The risk of cuts within the Oadby Member are that obstructions such as boulders may be present. Periglacial conditions may have also arisen in shallow shear surfaces which may cause slope instability, as well as potential perched water in granular beds. The unit is likely to be sensitive to changes in moisture content.
Route Zone 5	Embankment	8670 9050 9290	8750 9230 9400	Gault Formation	Likely to be founded onto Gault Formation assuming removal of any soft/loose or weathered material.	The risk of embankments within the Gault Clay Formation are that it may experience long-term / differential settlement. The unit is likely to experience shrink/swell behaviour. Variable weathering profile may lead to soft/loose deposits at founding level.
	Cutting	8750	9050	Gault Formation	Likely to be founded onto Gault Formation assuming removal of any soft/loose or weathered material.	The risk of cuttings within the Gault Clay Formation are that the deposit may require reasonably shallow angles (c. 1:3.5) to ensure long-term stability due to the geotechnical properties of this unit. This unit is likely to experience shrink/swell behaviour. Perched water may potentially be encountered which may lead to cut instability.
	At Grade	9400	9450	Gault Formation	Likely to be founded onto Gault Formation assuming removal of any soft/loose or weathered material.	The risk of founding on the Gault Clay Formation are that it is susceptible to shrink/swell behaviour, and may be subject to long-term / differential settlement.

5.4 Geotechnical Risks Associated with Structures

Table 5.4 summarises the proposed structures along the route, the indicated founding strata and their associated high-level geotechnical risks, along with the likely foundation method that would be utilised. Locations where additional structures may also be required due to narrow corridors between existing infrastructure have also been considered in the below assessment. For further details of the structures, please refer to Section 4.

It should be noted that some areas have limited topographic survey coverage and/or LiDAR information (e.g. Zone 4 - 5), and the below table should be updated upon receipt of this information. Upon completion of a full site topographic survey, this section should be updated accordingly.

No significant structures are currently expected in Zones 1, 4, 6, 7, and 8, therefore these are not assessed in the below table. Should the proposed design change, this should be reassessed.

Route Zone	Structure Type	Start Chainage*	End Chainage*	Founding Unit	Possible Foundation Solutions	High Level Geotechnical Risks
Route Zone 2	Retaining Wall	Ch 2380	Ch 2520	Oadby Member	It is possible that shallow foundations may be utilised within the Oadby Member. However, this is dependent on loading conditions and the strength characteristics of the Oadby Member. If the unit is not suitable for shallow foundations, then a deep foundation solution such as piles may be required.	The Oadby Member is likely to be a variable deposit leading to differential and long-term consolidation settlement, and is likely to be moisture sensitive therefore ground conditions may deteriorate if the material becomes wet. Periglacial features such as shallow shear surfaces may be present and perched water may potentially be encountered, which may present a risk of instability during construction. The Oadby Member may contain obstructions to retaining wall construction (specifically embedded walls such as sheet piles) such as cobbles / boulders.
Route Zone 3	Culvert extension	Ch 3455	Ch 3475	Oadby Member	It is possible that shallow foundations may be utilised within the Oadby Member. However, this is dependent on loading conditions and the strength characteristics of the Oadby Member. If the unit is not suitable for shallow foundations, then a deep	If placed on a shallow foundation, it should be noted that the Oadby Member is likely to be a variable deposit leading to differential settlement between the culvert and the road, and long-term consolidation settlement. The unit is likely to be moisture sensitive therefore ground

Table 5.4: Geotechnical Risks Associated with Structures

Route Zone	Structure Type	Start Chainage*	End Chainage*	Founding Unit	Possible Foundation Solutions	High Level Geotechnical Risks
					foundation solution such as piles may be required.	conditions may deteriorate if the material becomes wet. Perched water may potentially be encountered which may lead to instability during construction. Additionally if a deep foundation solution is proposed, the Oadby Member may contain obstructions to possible solutions such as driven piles due to the presence of cobbles / boulders.
	Potential Minor Retaining Structures	Ch 2700 Ch 3050	Ch 2850 Ch 3200	Oadby Member	It is possible that a minor retaining structure may be required throughout some of these chainages due to the adjacent A428 and St Neot's Road, with the presence of existing infrastructure / cuttings, and limited room to construct earthworks. It is possible that shallow foundations may be utilised within the Oadby Member. However, this is dependent on loading conditions and the strength characteristics of the Oadby Member. If the unit is not suitable for shallow foundations, then a deep foundation solution such as piles may be required.	The Oadby Member is likely to be a variable deposit leading to differential and long-term consolidation settlement, and is likely to be moisture sensitive therefore ground conditions may deteriorate if the material becomes wet. Periglacial features such as shallow shear surfaces may be present and perched water may potentially be encountered, which may present a risk of instability during construction. The Oadby Member may contain obstructions to retaining wall construction (specifically embedded walls such as sheet piles) such as cobbles / boulders.
Route Zone 4	Potential Retaining Structure	Ch 5700	Ch 6100	Oadby Member	It is possible that a retaining structure may be required within this area due to the nearby presence of adjacent road infrastructure / cutting (A428 and St Neot's Road, and limited room to construct earthworks. It is possible that shallow foundations may be utilised within the Chalk, assuming removal of any weathered material. Dependent on the strength / weathering profile and loading scenarios, it is possible that ground improvement or a deep	The Oadby Member is likely to be a variable deposit leading to differential and long-term consolidation settlement, and is likely to be moisture sensitive therefore ground conditions may deteriorate if the material becomes wet. Periglacial features such as shallow shear surfaces may be present and perched water may potentially be encountered, which may present a risk of instability during construction. The Oadby Member may contain obstructions to retaining wall construction

Route Zone	Structure Type	Start Chainage*	End Chainage*	Founding Unit	Possible Foundation Solutions	High Level Geotechnical Risks
		Chainage	Chanage		foundation solution such as piles could be required.	(specifically embedded walls such as sheet piles) such as cobbles / boulders. The Oadby Member may be thin within this area of the site, therefore it is possible that the underlying West Melbury Marly Chalk formation may be encountered. It is possible that at its boundary with the Chalk, this unit may have be reworked by glacial processes resulting in variable, low strength and potentially compressible material. If encountered, the Chalk is likely to be sensitive to frost / moisture ingress and may contain a variable weathering profile. It may contain perched groundwater which
						There is a risk of dissolution features within this deposit which may lead to subsidence/instability and presence of low strength, compressible material at foundation level. Although no natural cavities are recorded within the Envirocheck Report, several man made mining cavities are recorded adjacent to the site and in the wider area around Zone 4.
Zone 5	Bridge	Ch 9230	Ch 9290	Gault Formation	It is possible that shallow and deep foundations may be utilised within the Gault Formation, dependent on the loading conditions and the strength characteristics of the unit. A deep foundation such as piles is likely to be required for large structures.	The Gault Formation may have a variable strength / weathering profile leading to long-term consolidation of the approach embankments and differential settlement between bridge elements and the associated approach embankments. The unit is also susceptible to shrink/swell which may lead to differential settlement of earthworks. Perched water may also

Route Zone	Structure Type	Start Chainage*	End Chainage*	Founding Unit	Possible Foundation Solutions	High Level Geotechnical Risks
						potentially be encountered. The unit may contain periglacial features near-surface such as shear surfaces, which may lead to slope instability. The unit may contain obstructions to construction such as limestone bands which may impact on deep foundation solutions such as piles, and the required pile lengths may vary dependent on the strength and weathering profile.

*Chainages are approximate only

5.5 Additional Geotechnical Risks

This section outlines any other applicable risks that have not been covered in the sections above. These are as follows:

- Agricultural land site likely to affect topsoil. An agricultural land classification and/or Soil Resource Survey (SRS) may be required:
- Hedgerows and trees removal of trees and hedgerow may be required within some areas, particularly between Zone 3 and 4 (approximate Ch. 4500 5900) and in discrete areas elsewhere on the site, which could affect construction.

6 Contaminated Land Qualitative Risk Assessment

6.1 Environmental Protection Act 1990, Part 11A

The primary legislative regime under which historic contaminated land is managed in the UK is Part IIA of the Environmental Protection Act (EPA), 1990. The framework for the assessment of potential land contamination adopted in this report is based on current guidance documents regarding the implementation of Part IIA of the EPA and the assessment of potentially contaminated land, with particular reference to:

- Department of the Environment Food and Rural Affairs (DEFRA) (2012): "Environmental Protection Act 1990: Part 2A, Contaminated Land Statutory Guidance", April 2012;
- Environment Agency (2008): "Human Health Toxicological Assessment of Contaminants in Soil", Science Report – SC050021/SR2;
- Environment Agency (2008): "Updated Technical Background to the CLEA Model", Science Report - SC050021/SR3;
- Construction Industry Research and Information Association (2001): "Contaminated land risk assessment: A guide to good Practice", CIRIA C552;
- British Standard Institution (2002): "Characterisation of waste. Leaching. Compliance test for leaching of granular waste materials and sludges. One stage batch test at a liquid to solid ratio of 10 l/kg for materials with particle size below 4 mm (without or with size reduction)", ref. BS EN 12457-2:2002;
- British Standard (BS) 10175:2011(+A2:2017), "Investigation of Potentially Contaminated Sites; Department for Communities and Local Government (2018): "National Planning Policy Framework".

Part IIA principally deals with sites where individual historic contamination linkages present a "Significant Possibility of Significant Harm" (SPOSH) or a Significant Possibility of Significant Pollution to Controlled Waters (SPOSPCOW) representing an unacceptable level of contamination risk for each linkage. The Part IIA clean-up is the minimum which can be done on a cost basis to make and keep the site in a "just safe" condition for an existing or planned change of use.

Elimination of liability under Part IIA is not always achievable largely because of the inherent risk basis of the statutory regime, the technical difficulty in establishing levels of contamination that are likely to represent SPOSH, and the variable distribution of contamination at many sites. Statutory guidance on Part IIA (DEFRA, 2012) recognises that sites require prioritisation by Local Authorities under the statutory Part IIA site inspection programme to ensure that only those sites likely to present the greatest risks are identified. However, it should be recognised that considerable investigation is often required to establish whether sites are likely to meet the definition of contaminated land under Part IIA. Such investigation may be beyond the scope of project budgets for nominally "low risk sites" necessitating judgement on an acceptable level of investigation, and the likelihood of meeting SPOSH / SPOSPCOW criteria based on incomplete data. Since the designation of Contaminated Land is the responsibility of the local Authority, it is advised that consensus is sought on any recommendations regarding the significance of contaminated land risks and remedial measures through consultation with the Regulator(s).

6.2 Planning Policy Context

The EPA is designed to ensure that risks are considered only in relation to the current use of the site. There are no obligations placed by the EPA for management or mitigation of risks relating to future uses which would require a change in planning permission. Planning policy guidance is available at the national and strategic levels. The relevant policies are considered below:

6.2.1 National Planning Policy Guidance

The National Planning Policy Framework (Department for Communities and Local Government, 2019) includes the following policies in relation to contaminated land:

Policy 170:

"Planning policies and decisions should contribute to and enhance the natural and local environment by:

e) preventing new and existing development from contributing to, being put at unacceptable risk from, or being adversely affected by, unacceptable levels of soil, air, water or noise pollution or land instability. Development should, wherever possible, help to improve local environmental conditions such as air and water quality, taking into account relevant information such as river basin management plans; and,

f) remediating and mitigating despoiled, degraded, derelict, contaminated and unstable land, where appropriate."

Policy 178:

"Planning policies and decisions should ensure that:

a) a site is suitable for its proposed use taking account of ground conditions and any risks arising from land instability and contamination. This includes risks arising from natural hazards or former activities such as mining, and any proposals for mitigation including land remediation (as well as potential impacts on the natural environment arising from that remediation);

b) after remediation, as a minimum, land should not be capable of being determined as contaminated land under Part IIA of the Environmental Protection Act 1990; and,

c) adequate site investigation information, prepared by a competent person, is available to inform these assessments.

Policy 180:

"Planning policies and decisions should also ensure that new development is appropriate for its location taking into account the likely effects (including cumulative effects) of pollution on health, living conditions and the natural environment, as well as the potential sensitivity of the site or the wider area to impacts that could arise from the development."

The glossary states the following relation to "site investigation information":

"Site investigation information: Includes a risk assessment of land potentially affected by contamination, or ground stability and slope stability reports, as appropriate. All investigations of land potentially affected by contamination should be carried out in accordance with established procedures (such as BS10175 Investigation of Potentially Contaminated Sites Code of Practice)."

6.3 Qualitative Risk Assessment Framework

Preliminary qualitative risk assessment is part of a phased approach as set out in UK guidance including CIRIA C552 (2001) and DEFRA LCRM (2019), the first stage requires development of a conceptual model that takes consideration of the environmental site setting and identifies potential contaminant sources, pathways and receptors, this allows potential pollutant linkages to be identified. The qualitative risk assessment follows on from this and is presented in the sections below.

6.4 Conceptual Model

6.4.1 Hazard Identification

For the proposed development, the potential sources, pathways and receptors of contamination have been identified in the conceptual site models below.

It is assumed that a robust environmental management plan will be adopted during the construction works and as a result, no contamination will occur as a result of leaks and spills during construction.

6.4.2 Risk Estimation and Risk Evaluation

The term risk is widely used in different contexts and circumstances, often with differing definitions. In UK Government publications about the environment, the standard definition is that "Risk is a combination of the probability, or frequency, of occurrence of a defined hazard and the magnitude of the consequences of the occurrence" (LCRM).

Following the development of the conceptual model and the identification and assessment of potential pollutant linkages, a preliminary assessment can be made of risk estimation and risk evaluation, as discussed in LCRM and CIRIA C552, to determine whether an unacceptable contamination risk is likely to exist.

LCRM defines risk estimation as predicting the magnitude (or consequence) and probability of the risk occurring that may arise as a result of that hazard. This is also identified in CIRIA C552 in which the risk assessment methodology uses qualitative descriptors of consequence, probability and thus risk. These descriptors are adopted for the purposes of this risk assessment. A description of the risk assessment methodology adopted is given in Appendix G.

6.4.3 **Process of Developing Conceptual Model**

A key element of an environmental risk assessment is the development of a conceptual model which is done by undertaking a Source –Pathway – Receptor analysis of the Site:

Sources (S) are potential or known contaminant sources e.g. a former land use;

Pathways (P) are environmental systems thorough which a contaminant could migrate e.g. air, groundwater;

Receptors (R) are sensitive environmental receptors that could be adversely affected by a contaminant e.g. Site occupiers, groundwater resources.

Where a source, relevant pathway and receptor are present, a pollutant linkage is considered to exist whereby there is a circumstance through which environmental harm could occur and a potential environmental liability is considered to exist. The sources, pathways and receptors expected on the route (for each separate zone) are summarised in the following section.

6.5 Preliminary Qualitative Risk Assessment

For each potential pollutant linkage identified within the conceptual model, the potential risk has been evaluated for ecological receptors, construction/maintenance workers and the final end users using a Preliminary Qualitative Risk Assessment. This is based on the probability of the pollution event, and the severity it may have on site users and the environment.

The contaminated land risk assessments and drawn conceptual site models are presented in Appendix G and should be updated upon receipt of further information. The methodology for the assessment is presented in Appendix H.

Mott MacDonald is not insured to advise on risk arising from asbestos, and therefore will not assess risk or give advice relating to risks associated with it. It is recommended that a specialist is consulted regarding mitigation or remedial measures required relating to the presence of asbestos at the site.

6.5.1 Sources

Sources of contamination identified across the proposed route zones are presented below.

6.5.1.1 On-site sources

- 1. Potentially contaminated artificial ground from historical and current land uses at Bourn Airfield.
- 2. Potentially contaminated artificial ground associated with the construction and operation of the British Antarctic Survey and University of Cambridge campus buildings.
- 3. Artificial ground and associated contamination from past and current infrastructure i.e. roads / highways.
- 4. Vehicles using existing infrastructure may have resulted in fuel / oil spillages and airborne particulates.
- 5. Potential contamination from the application of pesticides and sewage sludge to the ground (agricultural land), and localised fuel / oil spillages from agricultural machinery.

6.5.1.2 Off-site sources

- 6. Potentially contaminated artificial ground from historical and current land uses at Bourn Airfield.
- 7. Potentially contaminated ground from the presence of an active fuel station i.e. fuel/oil spillages and airborne particulates.
- 8. Potentially contaminated artificial ground from historical extractive industries and potentially infilled land within 250m of the Zone.
- Potentially contaminated artificial ground associated with the construction and operation of the British Antarctic Survey and University of Cambridge campus buildings and nearby historical industrial activity.
- 10. Artificial ground and associated contamination from past and current infrastructure i.e. roads / highways.
- 11. Vehicles using existing infrastructure may have resulted in fuel/oil spillages and airborne particulates.
- 12. Potentially contaminative contemporary trade directory entries within 250m of the site.
- 13. Potential contamination from the application of pesticides and sewage sludge to the ground (agricultural land), and localised fuel / oil spillages from agricultural machinery.

6.5.1.3 Sources in relation to Route Zones

Table 6.1 summarises which of the aforementioned sources of contamination are likely to be encountered at each of the zones. It should be noted that detailed zone-specific sources are presented in their respective contaminated land risk assessment and conceptual site model (Appendix G).

		Zone									
	Z1	Z2	Z 3	Z 4	Z5	Z6	Z 7	Z 8			
On-sit	te sources										
1	Х	-	-	-	-	-	-	-			
2	-	-	-	-	х	-	-	-			
3	-	x	x	x	х	x	-	X			
4	-	x	x	x	х	x	-	X			
5	-	-	-	x	х	х	х	-			
Off-si	te sources	j		· · · · · · · · · · · · · · · · · · ·			·				
6	Х	-	-	-	-	-	-	-			
7	-	x	-	-	-	-	-	-			
8	-	-	-	x	-	-	-	X			
9	-	-	-	-	-	х	-	-			
10	-	-	-	x	-	x	х	-			
11	Х	-	-	Х	-	X	X	-			
12	х	-	x	x	Х	-	х	X			
13	-	х	x	-	Х	x	-	X			

Note: 'X' indicates where a source is present, '-' indicates where a source is not present/not applicable.

6.5.2 Pathways

Contamination pathways identified across the proposed route zones are presented below.

- 1. Human uptake pathways
 - Direct soil and dust ingestion (outdoors)
 - Skin contact with soils and dust
 - Inhalation of outdoor vapours
- 2. Horizontal and vertical migration of any volatile vapours resulting from potential on/offsite fuel spillages and / or off-site artificial ground.
- 3. Horizontal and vertical migration of any ground gas resulting from potential on/off-site fuel spillages and / or off-site artificial ground.
- 4. Horizontal and vertical migration of contaminants in the unsaturated zone.
- 5. Horizontal and vertical migration of contaminants in the saturated zone.
- 6. Migration of contaminants along engineered preferential pathways.
- 7. Surface run-off along roads, pavements, and other surfaces e.g. soil.

6.5.2.1 Pathways in relation to Route Zones

The geology (both superficial and bedrock geology) below the proposed route varies between zones (detailed in Section 4); due to this, some pathways may be more significant than others in each zone. A summary of the potential pollutant pathways are presented in Table 6.2.

Detailed zone-specific source-pathway-receptor relationships are presented in their respective contaminated land risk assessment and conceptual site model (Appendix G).

Pathways	Zone							
	Z1	Z2	Z 3	Z4	Z 5	Z6	Z 7	Z8
1	Х	Х	x	X	x	x	X	Х
2	х	Х	x	X	Х	х	Х	Х
3	-	-	-	X	-	-	Х	X
4	х	Х	x	X	X	х	X	X
5	x	Х	x	x	х	х	x	Х
6	X	х	x	х	х	х	Х	X

Table 6.2: Pathways in relation to Route Zones

Note: 'X' indicates where a pathway is present, '-' indicates where a pathway is not present/not applicable.

6.5.3 Receptors

Contamination receptors identified across the proposed route zones are presented below.

- 1. Construction workers.
- 2. Final end users (on-site bus route users, road users).
- 3. Final end users (off-site residential / commercial / recreational).
- 4. Groundwater in the Oadby Member (Secondary Undifferentiated aquifer).
- 5. Groundwater in the Woburn Sands Formation (Principal aquifer).
- 6. Groundwater in the West Melbury Marly Chalk Formation (Principal aquifer).
- 7. Surface water features.
- 8. Flora and fauna.

6.5.3.1 Receptors in relation to Route Zones

Table 6.3 summarises the relevant receptors identified at each zone. Detailed zonespecific receptors are presented in their respective contaminated land risk assessment and conceptual site model (Appendix G).

Receptors	Zone							
	Z 1	Z2	Z 3	Z4	Z5	Z6	Z 7	Z8
1	x	x	x	x	x	x	x	х
2	X	Х	X	X	X	Х	х	х
3	-	Х	X	X	-	X	-	х

Table 6.3: Receptors in relation to Route Zones

4	х	Х	Х	х	-	-	Х	Х
5	х	x	-	-	-	-	-	-
6	-	-	х	х	х	-	-	х
7	х	x	х	х	х	х	х	х
8	-	-	-	-	-	х	-	-

Note: 'X' indicates where a receptor is present, '-' indicates where a receptor is not present/not applicable.

7 Conclusions and Recommendations

7.1 Geotechnical and Geo-environmental Summary

Table 7.1 summarises both the geotechnical and geo-environmental findings of this report for each of the proposed route zones, along with a summary of the initial engineering proposed.

The BGS 1:50,000 mapping and Envirocheck Report record superficial deposits of the Oadby Member to be present across the majority of the site footprint. The solid geology which may be encountered at surface includes the West Melbury Marly Chalk Formation and the Gault Formation, which are anticipated to be encountered around Coton and to its east towards Cambridge. A summary of the geotechnical risks associated with these deposits to the proposed scheme is provided below, with the relevant deposits referred to within Table 7.1.

Superficial Deposits of the Oadby Member are likely to be encountered across the majority of the site (Zones 1 - 4, 7 and 8). The Oadby Member is likely to be moisture sensitive therefore ground conditions may deteriorate if the material becomes wet. This is likely to be a variable deposit which may lead to variable and long-term consolidation settlement of embankments. Periglacial shear-surfaces and perched water in granular beds may be encountered which can lead to instability of slopes during construction. Obstructions such as cobbles and boulders which may also pose as obstructions to embedded walls requiring removal and replacement.

The West Melbury Marly Chalk Formation is likely to be encountered in Zone 4 around the Coton area. Pavement over this material is likely to be susceptible to frost and will need to be founded below the frost susceptible zone. The Chalk may have a variable weathering zone which could lead to differential settlement and low strength material present at foundation level. This unit may contain natural and man-made cavities / dissolution features which could lead to subsidence and the presence of low strength compressible material at foundation level. It is possible that at its boundary with the Oadby Member, this unit may have be reworked by glacial processes resulting in variable, low strength and potentially compressible material.

The Gault Formation is likely to be encountered east of Coton. This deposit may have a variable strength / weathering profile which may lead to differential settlement between elements, and long-term consolidation settlement of embankments. The unit is susceptible to shrink/swell and may contain periglacial features such as shallow shear surfaces, which may lead to instability. Obstructions to deep foundation construction such as limestone bands may be present in this unit.

The geo-environmental risks identified have generally been assessed as moderate to low. The proposed route requires significant earthworks in some areas (up to c. 5m of embankment), along with structures, all requiring below ground excavation. A reasonable area of the route passes through areas of agricultural land therefore a significant source of contamination is not anticipated within these areas.

It has been determined that potentially contaminated artificial ground may be present at particular locations along the route, particularly around Bourn Airfield, Wellington Way Roundabout fuel station and the University of Cambridge campus where notable construction / demolition / earthworks have previously occurred. Further assessment and

appropriate management (i.e. Materials Management Plan) is required if the material in these areas is to be re-used or disposed of during the works.

A drainage strategy is currently under development by Mott MacDonald and is investigating drainage options across the scheme, with the drainage solutions to be installed along the route to be confirmed. There is potential for sustainable drainage systems to be utilised including infiltration, soakaways, filter strips, filter drains and swales. The drainage solutions chosen could potentially impact infiltration into the unsaturated zone and/or the quality of surface water bodies, and therefore the risk assessment should be updated upon completion of the drainage strategy.

The assessment assumes the following mitigation measures will be in place:

- Use of a Construction Environmental Management Plan (CEMP) to ensure control of dust emissions, surface run-off and suitable storage of oils and fuels during the construction works to prevent new sources of contamination; and
- Use of personal protective equipment and good hygiene practice by construction workers.

Table 7.1: Geotechnical and Geo-environmental Sum	mary of Route Zones
---	---------------------

Route Zone	Geotechnical Summary	Geo-environmental Summary	Initial Engineering Summary
Zone 1	Traverses agricultural land therefore may affect topsoil. The superficial geology recorded at the site consists of the Oadby Member. The risks associated with the Oadby Member include being a	The most significant contamination source on the site is Bourn Airfield, which covers the majority of Zone 1. There is the potential for hazardous contaminants / made ground to be present within 250m of the proposed route, which could be encountered during works.	Embankments <1.5m, and Cuttings up to c. 2.5m within the Oadby Member. At grade areas and pavements are also expected to be found directly on to the Oadby Member.
	moisture sensitive, potential to contain granular beds and perched water, contain obstructions such as cobbles/boulders, and may potentially be aggressive to buried infrastructure.	All risks have been assessed as low, assuming standard mitigation. This is due to the nature of the works (proposed earthworks and increased hardstanding cover along the	Pavement within cut may be founded directly on the Oadby Member.
	The solid geology is recorded as the Kimmeridge Clay Formation, and Woburn Sands Formation. Geotechnical risks are summarised in Section 5, with these deposits not expected to be encountered due to the significant thickness of the Oadby Member.	route) and the significant thickness of the Oadby Member (Secondary Undifferentiated). Further risk assessment based on material testing will be required if material is proposed for reuse from this area.	The Oadby Member, recorded beneath the entire zone footprint, is unlikely to form a suitable medium for infiltration drainage.
Zone 2	Traverses minor areas of agricultural land therefore may affect topsoil. The superficial geology recorded at the site consists of the Oadby Member The risks associated with the Oadby Member include being a variable deposit leading to differential settlement, likely to be moisture sensitive, potential to contain granular beds and perched water, contain obstructions such as cobbles/boulders, and may potentially be aggressive to buried infrastructure. The solid geology is recorded as the Woburn Sands Formation and Gault Formation. Geotechnical risks are summarised in Section 5, these deposits are not expected to be encountered due to the significant thickness of the Oadby Member.	The most significant source identified on the site is the active fuel station, a potential source for leaks, spills and associated vapours from underground fuel tanks. There is the potential for hazardous contaminants / made ground to be present within 250m of the proposed route which could be encountered during works. All risks have been assessed as low to moderate, assuming standard mitigation. This due to the nature of the works (proposed earthworks and increased hardstanding cover along the route) and the significant thickness of the Oadby Member (Secondary Undifferentiated). Further risk assessment based on material testing will be required particularly if any made ground is proposed for reuse from this area.	Embankments up to c. 4.5m, and cuttings up to 3.0m in height underlain by the Oadby Member or possible engineered fill associated with existing earthworks along the A428. Potential structures within this area include a potential retaining wall north of Childerley Lodge, the east of this where the route runs adjacent to the south of the A428 (See Section 5.4). These are likely to found in the Oadby Member. Pavement within cut may be founded directly on the Oadby Member. The Oadby Member, recorded beneath the entire zone footprint, is unlikely to form a suitable medium for infiltration drainage.
Zone 3	Traverses adjacent to the A428 therefore Artificial Ground may be encountered, and runs along a thin wooded area adjacent to St Neot's Road therefore trees/vegetation may require removal The superficial geology recorded at the site consists of the Oadby Member. Risks associated with the Oadby Member	The active fuel station, off-site but within 250m of Zone 3, was identified as a potential source for leaks, spills and associated vapours from underground fuel tanks. There is therefore the potential for hazardous contaminants / made ground to be encountered during works.	Embankments up to c. 2.5m in height, and cuttings up to 2.5m in height, expected to found on/in the Oadby Member. At grade areas are also expected to found on the Oadby Member.

Route Zone	Geotechnical Summary	Geo-environmental Summary	Initial Engineering Summary
	include being a variable deposit leading to differential settlement, likely to be moisture sensitive, potential to contain granular beds and perched water, contain obstructions such as cobbles/boulders, and may potentially be aggressive to buried infrastructure. The unit may contain periglacial features such as shallow shear surfaces.	All risks have been assessed as low to moderate, assuming standard mitigation. This due to the nature of the works (proposed earthworks and increased hardstanding cover along the route) and the significant thickness of the Oadby Member (Secondary Undifferentiated).	Potential structures within this area include an extension to an existing culvert. This is likely to found in the Oadby Member. Potential retaining structures may be required where earthworks extend into the adjacent A428 or St Neots Road. These are likely to found on to the Oadby Member and may encounter
	The solid geology recorded at the site consists of the Gault Formation, with the West Melbury Marly Chalk Formation recorded directly adjacent to the east. Geotechnical risks are summarised in Section 5, these deposits are not expected to be encountered due to the significant thickness of the Oadby Member.		the Chalk dependent on the foundation requirements. Pavement within cut may be founded directly on the Oadby Member. The Oadby Member, recorded beneath the entire zone footprint, is unlikely to form a suitable medium for infiltration drainage.
Zone 4	Traverses agricultural land therefore may affect topsoil. The superficial geology recorded at the site consists of the Oadby Member. Risks associated with the Oadby Member include being a variable deposit leading to differential settlement, likely to be moisture sensitive, potential to contain granular beds and perched water, contain obstructions such as cobbles/boulders, and may potentially be aggressive to buried infrastructure. The unit may contain periglacial features such as shallow shear surfaces. The solid geology is recorded as the West Melbury Marly Chalk Formation. Potential significant risks associated with this unit include solution features, high frost susceptibility, variable weathered zone and flint obstructions.	All risks have been assessed as low to moderate, assuming standard mitigation. Increased hardstanding cover and no enclosed spaces are proposed along the route. Although no significant source of contamination was identified along the route, the Principal Chalk aquifer underlying the Oadby Member is a significant and sensitive receptor and is closer to the surface than in other zones (Oadby Member gradually thins to the east).	Embankments up to 2.0m, and cuttings up to 2.5m. These are expected to encounter the Oadby Member in the western area of this zone, and Chalk in the east. Minor areas at grade may also encounter either of these deposits. Where embankments found on more than one unit along their length, a load transfer platform / ground improvement may be required to prevent differential settlement. Potential structures within this area include a possible retaining structure required between St Neot's Road and the A428. This is likely to found on to the Oadby Member and may encounter the Chalk dependent on the foundation requirements. Pavements within cut may found directly on to the Oadby Member or Chalk. The Oadby Member, recorded beneath the majority of the zone footprint, is unlikely to form a suitable medium for infiltration drainage. The West Melbury Marly Chalk Formation may potentially form a suitable medium for infiltration drainage.

Route Zone	Geotechnical Summary	Geo-environmental Summary	Initial Engineering Summary
Zone 5	Traverses agricultural land therefore may affect topsoil. No superficial geology is recorded at the site. The solid geology at the site consists of the Gault Formation. Potential significant risks include long term settlement / differential settlement, shrink / swell behaviour, potential aggressive ground, periglacial processes (such as shallow shear surfaces), and potential below ground obstructions such as limestone bands.	All risks have been assessed as low, assuming standard mitigation. This is due to the lack of significant contamination source, the nature of the works (proposed earthworks and increased hardstanding cover along the route) and the presence of the Gault Formation (Unproductive Strata) below the site.	Embankments up to c. 5.0m, and cuttings up to c. 1.5m in height are these will be founded on to the Gault formation. A bridge is required to cross the M11. It is likely that this will be founded on deep foundations in the Gault Formation (with associated approach embankments) Pavements are expected to encounter the Gault Formation. However, the Chalk may be encountered in the west of this zone. Embankments which cross the boundary between these units may require a load transfer platform / ground improvement to prevent differential settlement. Pavements within cut may be founded directly onto the Gault Formation. The Gault Formation, recorded beneath the entire zone footprint, is unlikely to form a suitable medium for infiltration drainage.
Zone 6	Traverses the West Cambridge Site (Cambridge University), therefore Artificial Ground may be encountered. Utilises existing infrastructure along Adam's Road. No superficial geology is recorded at the site The solid geology recorded at the site consists of the Gault Formation. Potential significant risks include long term settlement / differential settlement, shrink / swell behaviour, potential aggressive ground, periglacial processes (such as shallow shear surfaces), and potential below ground obstructions such as limestone bands.	All risks have been assessed as very low to low, assuming standard mitigation. This is due to the lack of significant contamination source, the nature of the works (proposed earthworks and increased hardstanding cover along the route) and the presence of the Gault Formation (Unproductive Strata) below the site.	No significant structures or earthworks are currently proposed within this area. Pavements are expected to be underlain by the Gault Formation. The Gault Formation, recorded beneath the entire zone footprint, is unlikely to form a suitable medium for infiltration drainage.
Zone 7	Traverses agricultural land therefore may affect topsoil. The superficial geology recorded at the site consists of the Oadby Member. Risks associated with the Oadby Member include being a variable deposit leading to differential settlement, likely to be moisture sensitive, potential to contain granular beds and perched water, contain obstructions such as cobbles/boulders, and may potentially be aggressive to buried	All risks have been assessed as low, assuming standard mitigation. No significant sources of contamination were identified and there are no earthworks or enclosed spaces are currently proposed as part of the Park and Ride scheme (at the time of writing).	No significant structures or earthworks are currently proposed within this area. Pavements are expected to be underlain by the Oadby Member. Structures for the park and ride are likely to be suitable for shallow foundations in the Oadby Member.

Route Zone	Geotechnical Summary	Geo-environmental Summary	Initial Engineering Summary
	infrastructure. The unit may contain periglacial features such as shallow shear surfaces.		The Oadby Member, recorded beneath the majority of the zone footprint, is unlikely to form a suitable medium for infiltration drainage
Zone 8	Traverses agricultural land therefore may affect topsoil. The superficial geology recorded at the site consists of the Oadby Member. Risks associated with the Oadby Member include being a variable deposit leading to differential settlement, likely to be moisture sensitive, potential to contain granular beds and perched water, contain obstructions such as cobbles/boulders, and may potentially be aggressive to buried infrastructure. The unit may contain periglacial features such as shallow shear surfaces.	All risks have been assessed as low, assuming standard mitigation. No significant sources of contamination were identified and there are no earthworks or enclosed spaces proposed along the route.	No significant structures or earthworks expected Pavements are expected to be underlain by the Oadby member. The Oadby Member, recorded beneath the majority of the zone footprint, is unlikely to form a suitable medium for infiltration drainage.

7.1.1 Recommendations

The following recommendations have been made with regards to the requirement for further mitigation measures based on the risks identified for both the route zones and the Park and Ride location option.

- A ground investigation should be designed to identify the variability in the ground and groundwater conditions. Geotechnical testing should also be undertaken to assess variations in the geotechnical properties of the units likely to be encountered. This should be completed prior to design. It is key to ascertain the presence, thickness properties of any Made Ground, the properties of which are unknown. The variability, weathering profile and properties of the Oadby Member, as well as the West Melbury Marly Chalk Formation and Gault Formation should also be determined;
- It is recommended that a natural and man-made cavity search is completed for the site based on a number of man-made (and potential presence of natural cavities) recorded in close proximity to the site;
- An assessment on the presence of contamination within the soils and groundwater at the site should be undertaken as part of any GI works specifically in zones where contamination sources have been identified. This will confirm the findings of the risk assessment and provide information on the potential for material re-use within the scheme;
- Monitoring of groundwater levels during and after GI should be undertaken in order to determine whether dewatering and drainage will be necessary;
- Gas monitoring should be undertaken if enclosed structures are proposed, such as the Park and Ride site;
- Chemical testing should be conducted as part of the GI to understand how aggressive the ground conditions are. Where the ground is found to be aggressive, lime treatment may be needed to reduce the pH of the soil and reduce the sulphate concentrations;
- If material reuse is proposed, this should be done under an appropriate regulatory regime which may include a waste exemption, environmental permit or Materials Management Plan. If disposal of excess material is required, this should be discussed with a waste carrier.
- Carry out a Detailed UXO Risk Assessment for Zones 1 2 (area identified as High risk), to better quantify the risk to the proposed works and any proposed ground investigation works; and,
- Carry out an Agricultural Land Classification (ALC) and Soil Resource Survey (SRS) to understand the impact of works upon the current Topsoil resource.

8 References

- Landmark PLC (Envirocheck Report), Ref. 236185287_1_1, February 2020 (Envirocheck Report 1);
- Landmark PLC (Envirocheck Report), Ref. 236185392_1_1, February 2020 (Envirocheck Report 2);
- British Geological survey Lexicon of Named Rock Units, accessed from <u>http://www.bgs.ac.uk/lexicon/</u> on 20/03/2020;
- British Geological Survey Geology of Britain Viewer, accessed from <u>http://www.bgs.ac.uk/discoveringGeology/geologyOfBritain/viewer.html</u> on 20/03/20;
- British Geological Survey Borehole Scans Database, accessed from <u>http://www.bgs.ac.uk/data/boreholescans/home.html on 01/05/2019;</u>
- British Geological Survey, 1975, Huntingdon. England and Wales Sheet 187, Drift Geology.
- British Geological Survey, 1981, Cambridge. England and Wales Sheet 188, Solid and Drift Geology.
- Worssam, B. C., Taylor, J. H., 1969. Geology of the country around Cambridge. Explanation of Sheet 188.
- Edmonds, E. A., Dinham, C. H., Casey, R., Day, J.B.W., 1965. Geology of the country around Huntingdon and Biggleswade. Explanation of Sheets 187 and 204.
- Design Manual for Roads and Bridges, 2008. Volume 4 Geotechnics and Drainage, Section 1 Earthworks, Part 2 HD22/08, Managing Geotechnical Risk.
- The Government. 2019. Flood Map for Planning. Retrieved from: <u>https://flood-map-for-planning.service.gov.uk</u>
- Bourn.org, 2013. RAF Bourn 1940 1945. Accessed online [Archive]: https://web.archive.org/web/20130227064024/http://www.bourn.org.uk/airfield.htm
- Bourn Airfield.co.uk, n.d. Bourn Airfield, accessed from <u>http://www.bournairfield.co.uk/about-new3/</u> on 11/03/20.
- Environment Agency, 2018. What's In My Backyard? [defunct], accessed from <u>http://apps.environment-agency.gov.uk/wiyby/default.aspx on 11/03/20</u>.
- Cambourne to Cambridge Guided Busway, Preliminary Geotechnical Route Assessment, Capita, June 2018.

Appendices

Α.	Overall Scheme Drawings	132
В.	Environmental Record Drawings	133
C.	Landmark Envirocheck Report	134
D.	Historical BGS Boreholes	135
E.	Preliminary UXO Risk Assessment Report	136
F.	Geotechnical Risk Register	137
G.	Contaminated Land Risk Assessments and Conceptual Site Models	146
Н.	Contaminated Land Risk Methodology	174
I.	Limitations	177

A. Overall Scheme Drawings

C:\users\ree89903\appdata\local\projectwise\workdir\mott-gb-pw-03\d0215863\392438-MMD-TC-XX-SK-CV-0020-21.dwg Apr 22, 2020 - 11:43AM REE89903

	Nates					
	 Based on O Dimensions These drawing Where no hat progress the 	S mapping licence no. © are in metres unless stat ings are not for construct atching is shown then the e design.	Crown copyrig ed otherwise. ion. e designer feel	ght and database rig Is adequate survey f	hts 2018 OS 10002	3205 o safety
Survey to A428 pavement edge (egde of hardstrip) - hardstrip assumed to be 0.75m taken from survey obtained further east. tow to No risk.	1:500 Key to symbol	S High Risk - lac progressing Medium Risk - Low Risk - Des Proposed publ	k of topogr Design ok sign ok to p ic transpor	25m raphical data proceed with lo rt route (PTR)	reventing desig	50m
	Reference dra	wings drawing is based o Survey date 03 / 20	on survey o	data 1378_P_3	_Site from 40-7	7
	P1 30/03/2	2020 JR Fir	st issue			SJ AJ
	Rev Date	Drawn Des	scription		(Ch'k'd App'd
		Drawn Description		1st Floor East Wing, Norwich, N United King +44 (0)7 +44 (0)7 mottmad	, 69-75 Thorpe IR1 1UA gdom I603 767530 I603 619365 c.com	Ch'k'd App'd Road
	Client	0	GR CA PA	EATE MBRI RTNE	r Dge Rshif	0
	Title Car Top	nbourne ographic	To Ca al Ris	ambridg sk Plan	e (C2C))
	Designed	J Reeve	JR	Eng check	S Jarvis	SJ
	Drawn Dwg check	J Reeve S Jarvis	SI	Coordination Approved	A Jackson A Jackson	AJ AJ
	Scale at A1	Status		Rev	Securi	
	Drawing Num	ס אין אין סע ber				עוכ
		392438-N	1MD-)	XX-C-S	K-0020	

C:\users\ree89903\appdata\local\projectwise\workdir\mott-gb-pw-03\d0215863\392438-MMD-TC-XX-SK-CV-0006.dwg Apr 6, 2020 - 12:01PM REE89903

Notes 1. Based on OS mapping licence no. © Crown copyright and database rights 2018 OS 100023205 2. Dimensions are in metres unless stated otherwise. 3. These drawings are not for construction. 4. Where no hatching is shown then the designer feels adequate survey has been obtained to safety progress the design.	
0 25m 50m 1:500 50m	
High Risk - lack of topographical data preventing design from progressing Medium Risk - Design ok to proceed with medium risk involved Low Risk - Design ok to proceed with low risk involved.	ı əd.
Proposed public transport route (PTR)	
Reference drawings 1) This drawing is based on survey data 1378_P_3_Site from 40-7 Itd. Survey date 03 / 2018	
P1 30/03/2020 JR First issue SJ Rev Date Drawn Description Ch'k'd Ap M 1st Floor East Wing, 69-75 Thorpe Road Norwich, NR1 1UA MOTT United Kingdom +44 (0)1603 767530 +44 (0)1603 619365 mottmac.com United communication	AJ p'd
Client	
Title Cambourne To Cambridge (C2C) Topographical Survey Risk Plan Sheet 2 of 2	
Designed J Reeve JR Eng check S Jarvis SJ Drawn J Reeve JR Coordination A Jackson AJ Dwg check S Jarvis SJ Approved A Jackson AJ Scale at A1 Status Rev Security Security 1:500 SK P1 STD	
Drawing Number 392438-MMD-XX-C-SK-0021	

B. Environmental Record Drawings

	Location M	Иар						
	A				A428			IBIC
			Λ	~	ant	~	0.0	~
	Key to Sy	mbols						
	Rout	e Zone 1	Centreline					
Plantation	Rout	e Zone 1	Centreline	500m E	Buffer			
	 Regi 	stered rad	dioactive s	ubstanc	es			
	e Explo	osive_site	s					
	Subs	tantiated	pollution i	ncident r	register			
	Pote	ntially infi	lled land					
	📀 Pollu	tion incid	ents to cor	ntrolled v	waters			
	Notif	ication of	installatior	ns handl	ing hazardous su	bstances	6	
	🔺 Man	made mir	ning activit	ies	5			
	• Loca	I authority	/ pollution	preventi	on and controls			
	Lisce	enced was	ste manag	ement fa	acilities			
	• Grou	ndwater a	and surfac	e water	abstractions			
A	Fuel	station er	ntries					
	🔺 Extra	active indu	ustries					
1	Discl	narge con	sents					
StiNeots	🔺 Cont	emporary	trade dire	ctory en	tries			
	🔵 BGS	Mineral S	Sites					
	Nataa							
	Notes							
	Location of te	atures si a extracte	nown is ap	proxima ndmark	te only. Envirocheck Rep	ort Refs		
	236185287_	1_1, and	23618539	2_1_1.	Linioonookitop			
	2019	r Credits:	Contains	OS data	a © Crown Copyri	ght and (database ri	ght
	01 14/04 Rev Dat	1/20 I	PF	Dra	tt for comme	nt	MG Ch'k'd	- Ann'd
	Dat				Mott Mac	Donal	d	779
	M				22 Station	Road	1 1 2 חו	
			Ν		United Kir	ngdor	ر 200 ا	
	MOT	T - DONA	LD		T +44 (0)	20 87	74 2000	
					W mottma	120 00 ac.con	o 1 5700 n	,
/ /	Client							
				GR	FATER			
				CA	MBRIDG	iΕ		
				PA	RTNERS	HIP		
		20						
	Camb	ourr	ne to	Can	nbridge			
	Geote	echni	ical a v Ris	nd (Geo-ĕnvi	ronr nt	nenta	
	Route	Zor	ie 1	~ ~				
	Envir	onme	ental	Con	straints	Plan	l	
	Designed	P	Fitt		Eng Check	МС	Gipson	\square
	Drawn	Р	Fitt		Coordination		-	+
	GIS Check	T Gra	aham		Approved		-	
	Scale at A3	00	Status D	RF		S		ך ח
Motros	Drawing Num	ber	F	~	1 101		511	_
1,000	3924	138-N	MMD-	GIS	-XX-DR-	GEO	D-000	1

C. Landmark Envirocheck Report

To be provided on request.

D. Historical BGS Boreholes

	IAN F. Geotechnic	ARM cal and	Enviror	ASSOCIAT amental Investigat	<u>ES</u> tions		Site A428 Caxton Common to Hardwick Improvement	Boreho Numbe 5/10	6
Boring Me Cable Per	thod cussion	Diamet 150	ter mm Cased	d to 1.50m	Ground 71.35	l Level (mOD) Sune	Client Highways Agency British Geological Survey	Job Numbe 2203	
		Locatio 5330	on 690 E 259	796 N	Dates 13/09/ 13/09/	01 - 01	Engineer Parsons Brinckerhoff	Sheet 4/2	2
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	1
0.00-0.50	B1				71.05	(0.30)	TOPSPOIL		11/201
						0.30	Stiff, mottled blue grey and brown, sandy gravelly CLAY. Gravel is fine to coarse, sub-angular to sub-rounded of flint and chalk		
0.75-1.25	U1			100 blows					
1.25	D1					(1.80)			
1.50-1.95	CPT N=24			3,7/4,5,7,8		-			
1,50-2.00	DZ								
British Geolo 2 25-2 70	ical Survey			British (100 blows	69.25	EUNEY 2.10	Stiff, blue arey mottled brown, gravelly CLAY, Gravel is fine to		
							coarse of flint and chalk		N
2.70	D2					(1.40)			
3.00-3.45 3.00	SPT N=21 D3			2,4/4,5,6,6		-			
					67.85	3.50			
3.75-4.20	∪3			100 blows			Stiff becoming very stiff with depth, blue grey, gravelly CLAY. Gravel is fine to coarse, sub-angular to sub-rounded of flint and chalk		
4 20									
4.50-4.95	SPT N=26			3,5/7,5,7,7	}	 			
4.50	D5								1
					50.				
5.50-5.95	U4			100 blows	Kodbaicól	Ennov			1
	ncar ouvej				cvivyivai				-
5.90 6.00-6.50	D6 B3					E			
6.50-6.95	SPT N=35			7,12/12,8,7,8					
6.50	D7						Very stiff below 6.50m		101 11
						E			111.
7.50-7.85	U5		1	100 blows			м		1
7,85	D8				1				-
									-
8.50-8.95	SPT N=42			13,15/12,10,10,10					-
0.50	09								1. 1
	jical Survey				eological	- Militi			1.
9.50-9.95	UG			100 blows		E.			1
						la la la la			-
Remarks		L	I			<u> </u>	Scale (approx	Logged By	4
							1:50	JG	
							Figure	No.	

	IAN F. Geotechnic	ARM	ER Z	ASSOCIAT amental Investigat	ES tions		Site A428 Caxton Common to Har	dwick Improvement		Borehole Number 5/16
Boring Met	nod ussion jital outvey	Diamet 150r	er mm Case	d to 1.50m	Ground 71.35	I Level (mOD)	Client Highways Agency	British Geological Survey		Job Number 2203
		Locatio 5336	on 690 E 259	796 N	Dates 13/09/ 13/09/	01 - 01	Engineer Parsons Brinckerhoff			Sheet 2/2
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)		Description		Legend
10.50-10.95 10.50	SPT N=43 D10			7,11/10,10,11,12			See previous description.		13	
11.50-11.95	U7			100 blows				3.		
11.95 British Geolo	D11 Jical Survey		8	British (eological	E				
12.50-12.85 12.50	SPT 50*/200 D12			9,13/18,21,11						
13.50-14.00 13.50-13.90	B4 U8			100 blows						
13.90	D13					- (14.50)		2		
14.50-14.88 14.50	SPT 47*/225 D14			5,12/14,14,19						
15.50-15.90	U9			100 blows						
British Geolo 15.90	D15				eological	Burvey				
16.50-16.88 16.50	SPT 55*/225 D16			11,16/19,19,17						
17.50-17.90	U10			100 blows			281	с 2		
17.90	D17			Slow(1) at 17.80m, rose to 17.70m in 20 mins.	53.35	18.00	-			·····
			, ,				Complete at 17.90m			
British Geolo	pical Survey			British	eological					
emarks Piezo at 17.5								<u></u>	Scale (approx)	Logged By
									1:50	JG

	IA Ge	NF2 otechnic	ARMI al and E	ER ASSOC	IATE estigatio	E S ons		A	e 128 Caxtor	n Commo	n to Hard	wick Impr	ovement			Borehole Number 5/16
Installatio Water Mo British Geo	on Type onitoring		Dimensio Intern Diame	ons al Diameter of Tube [A] ater of Filter Zone = 150	= 19 mm) mm	eological (SUNEY	CII Hi	ent ghways A(gency		British (eological	0000		Job Number 2203
			Location 53369	0 E 259796 N		Ground I 71.35	Level (m	DD) En Pr	gineer arsons Brir	nckerhoff		15				Sheet 1/1 _e ,
Legend	Instr (A)	Level (mOD)	Depth (m)	Description					G	roundwa	ter Strike	s During	Drilling			
		70.85	0,50	Concrete		Date	Time	Depth Struck (m)	Casing Depth (m)	Inflo	w Rate	5 min	Read	lings 15 min	20 min	Depth Sealed
						13/09/01		17.80	17.50	Slow					17.70	
									Gr	oundwat	er Obser	vations E	During Dr	illing		
					British te	eniogical :			Start of Si	hift	<u></u>	HUISDI	ienindical	End of Sh	lift	
					ļ	Date	Time	Depth Hole (m)	Casing Depth (m)	Water Depth (m)	Water Level (mOD)	Time	Depth Hole (m)	Casing Depth (m)	Water Depth (m)	Water Level (mOD)
				Topfill		inst.	[A] Type	: Piezom	instru eter (A)	iment Gr	oundwat	er Obser	vations			
		Super-			British Ge	Date	une) Time	Depth	Level				Rema	arks		
					11001	14/09/01 21/09/01 02/10/01 09/10/01 18/10/01		(m) DRY 16.99 4.09 NA NA	(mOD) 54.36 67.26	Borehol Borehol	le not acc le not acc	essible essible				enory 1
														α.		
	<u> </u>	56.35	15.00	Bentonite Seal												
		55.35	16.00													
		54.15 53.85	17.20 17.50	Sand Filter Piezometer Tip	British Ge	eological						Dilish (ieological	ŜUNE		
Remarks Cover fitt	ed.															

	IAN F.	ARM cal and	ER ASSOC	CIAT westiga	<u>ES</u> tions		Site A428 Caxton Common to Hardwick Improvement	Trialp Numb TP5
Excavation JCB 3CX	n Method gical Suivey	Dimen: 2.6	sions x 0.7	British C	Ground 71.99	Level (mOD)	Client Highways Agency British Geological Survey	Job Numb 220
		Locatio 533	525 E 259584 N		Dates 17/09/0 17/09/0	01 - 01	Engineer Parsons Brinckerhoff	Sheet 1/
Depth (m)	Sample / Tests	Water Depth (m)	Field Record	is	Level (mOD)	Depth (m) (Thickness)	Description	Legen
		į.			71 69	(0.30)	Grass over TOPSOIL	
0.50	J1					(0.40)	Firm brown CLAY	
1.00	B1				71.29	0.70	Stiff grey and brown CLAY with much sub-angular to sub-roun fine to coarse gravel of flint and chalk, occasional boulders of siltstone. Light blue grey mottled brown from 1.3m BGL.	nded
1.50 British Geolo 1.50	dcal Suvey		180,190,220/Av. 196.7		eological S	2. Ejiye (1.90) 1.		
2.00	B2					-		
2.50	J3		Hand vane failed due to fissures		69.39	2.60	Stiff blue grey motiled brown CLAY with much fine to coarse	
3.00	В3				68,99	(0.40) - 3.00	gravel and coopies of film and chaik and occasional sand lens	es.
				a			Complete at 3.00m	
	ical Survey			British Q	eological i	HIDREY	British Geological Survey	
Plan							Remarks	
	. e ^{t.}						Pit dry and stable	
British Geolo	gical Survey			British G	ieological S	survey		
6 36					•			
e se	•	÷		•	•	• •		

	IAN F. Geotechnic	ARM cal and E	ER A	SSC mental	DCIAT Investige	TES ations		Site A428 Caxton Common to	Hardwick Improvement	Trialpi Numbe TP:5/	t 13
Excavation JCB 3CX	n Method gical Survey	Dimensi 2.6 x	ons 0.7		8000	Ground 71.55	d Level (mOD)	Client Highways Agency	British Geological Sulvey	Job Numbe 2203	er 3
		Location 53366	1 E 2597	13 N		Dates 12/09/ 12/09/	01 - 01	Engineer Parsons Brinckerhoff		Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	F	ield Reco	ords	Level (mOD)	Depth (m) (Thickness)		Description	Legend	Water
						71.25	(0.30)	TOPSOIL			
0.50	J1					71.05	(0.20) 0.50	Firm brown sandy CLAY Stiff grey mottled light brow	n CLAY with occasional to much fine		
1.00	В1							to coarse sub-angular to su large pockets of light brown mottled brown and damp fr very stiff below 3.9m BGL.	ub-rounded gravei of flint and chalk an I clayey sand becoming blue grey om 1.5m BGL, becoming blue grey	d	
1.50 Iritish Geolog	J2 Istal Survey					Jeological S	In rey				
2.00	B2						(3.70)				
2.50	J3						- - 				
3.00	B3		(
3.50	J4							*			
4.00	B4					67.35	4.20			· · · · ·	
ritish Geolog	icál Survey		ň			eological \$		Complete at 4.20m			
1											
								5	14		
'lan .	· · ·		•	•	•			Remarks Pit drv and stable		. .	
•			•		•	•		waareer uit to 🗲 ontwicking of statements to b			
ritish Geolog	jical Survey		÷	•	-Dillish (ieological S	uney				
			•	8.	•	•	· .				
	• •	•			٠		• •				
			•				· ·	Scale (approx)	Logged By Figure	e No.	
							[1:40	JG 22	3.TP5/13	

	IAN F.	ARM	ER A	ASSOCIAT	<u>ES</u>		A428 Caxton Common to Hardwick Improvement		Soreho Numbe 5/22
Boring Met Cable Perc	hod	Diamet 150	er mm Case	d to 1.50m	Ground 71.11	Level (mOD)	Client Highways Agency	Ĩ	Job Numbe 2203
		Locatio		British	Dates	Survey	British Geological Survey		Sheet
		5340	005 E 259	9793 N	12/09/ 12/09/	/01 - /01	Parsons Brinckerhoff		1/1
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	L	egend
0 20-0 50	B1				70.91	0.20	TOPSOIL		
0.50-0.90	U1			30 blows		-	Firm, light brown, slightly sandy gravelly CLAY. Gravel is fine coarse, angular to rounded, of chalk and flint	to	
						i.			
0.90	J1				1	(1.80)			
1 50 1 -5	110			40 blow		L.			
1.50-1.95	02			40 DIOWS		1			
1.95	J2				69.11	2.00			
2.00-2.50	ical Survey			British (leological	Burvey	Firm to stiff, dark grey brown / dark grey mottled, slightly sand slightly gravelly to gravelly CLAY. Gravel is fine to coarse, and to rounded of chalk and flight	dy, gular	
2.50-2.90	U3			40 blows		(1.20)	to rounded, or chaik and mint		
0.05	10								
2.90	13				67 91	320			
3.50-3.90	U4			45 blows	01.01		Stiff, fissured grey slightly gravelly to gravelly CLAY. Gravel is to coarse, sub-angular to sub-rounded, of chalk and occasion	al	
							flint		
3.90 4.00-4.50	J4 B3				}	(1.80)	2		
								•	
4.55-5.00	U5			45 blows		10 11			
5.00	J5			12/09/01-DRY	66 11	5.00		:	÷:
5,00						. 0.00			
							Complete at 5.00m		
British Geolo	pical Survey			B	leological	Eurvey			
				6	1				
1									
						1.1.1			
			-						
						L			
British Geold	gical Survey				Geological	Survey			
					1				
Remarks DRY							Sc (ap	ale prox) B	ogged y
							. 1	:50	PB
								2203	5/22
								2203.	5122

Installi	ation	IA Ge	IN F2 otechnic	ARMI al and E	ER ASSOCIAT nvironmental Investige	TES ations		A4	e 128 Caxtor ent	1 Commo	n to Hard	wick Impr	ovement			Borehole Number 5/22 Job
Water British (Mor	nitoring gical Surv		Interna Diame	al Diameter of Tube [A] = 19 r ter of Filter Zone = 150 mm	nm Geological S		Hi	ghways Ag	gency						Number 2203
				Location 53400	5 E 259793 N	Ground 71.11	Level (m	OD) En	gineer arsons Brir	nckerhoff						Sheet 4/1
Legend	Water	instr (A)	Level (mOD)	Depth (m)	Description			1	G	roundwa	ter Strike	s During	Drilling			
						Date	Time	Depth Struck	Casing Depth	Inflov	v Rate		Read	lings	00	Depth Seale
			70.61	0.50	Concrete			(117	(,							(11)
									Gr	oundwate	er Obsen	vations D	Juring Dri	illing		
<u>(971)(1</u> 73)	eolo		ey -		Cement/Bentonite Grout	Geological S	JUIVey		Start of S	hift		British G	eological S	End of Sh		
						Date	Time	Depth Hole (m)	Casing Depth (m)	Water Depth (m)	Water Level (mOD)	Time	Depth Hole (m)	Casing Depth (m)	Water Depth (m)	Water Level (mOD
	eolo	pica Surv	69.11	2.00	Bentonite Seal	Inst.	(A) Type	: Piezomo	Instru eter [A]	ament Gra	oundwate	er Obser British G	vations	arks		
			68.11	3.00		Date	Time	Depth (m)	Level (mOD)							
					Sand Filter	14/09/01 21/09/01 02/10/01 09/10/01 18/10/01		4.18 2.35 1.94 NA NA	66.93 68.76 69.17	Borehol Borehol	e not acc e not acc	essible essible				
			66.61	4 50						÷						
संस्थिति हे	eolo		00.01		Piezometer Tip	Geological S	liney									
			66.31	4.80	8											
			66.11	5.00	Sand Filter											
Reman Cover	ks fitte	ď.														

	IAN F	ARME	R ASSOCI	AT	ES		Site		Trialpi	it
	Geotechni	cal and En	vironmental Inve	stigat	tions	.n	A428 Caxton Common to	Hardwick Improvement	TP5/	12
Excavation JCB 3CX	n Method gical Suvey	Dimension 2.6 x 0.7	ns 7	illish Gi	Ground 71.60	I Level (mOD)	Client Highways Agency	British Geological Survey	Job Numbe 2203	er 3
		Location 534300	E 259762 N		Dates 17/09/ 17/09/	01 - 01	Engineer Parsons Brinckerhoff		Sheet 1/1	1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records		Level (mOD)	Depth (m) (Thickness)		Description	Legend	d
						(0.30)	TOPSOIL			XIIN
0.50	J1				71.30	0.30	Stiff fissured blue grey mo sub-rounded fine to coars cobbles.	ttled brown CLAY with sub-angui e gravel of flint and chalk. With s	ar to ome	A
1.00	B1									
) si			U d	. (1.80)				
1.50 Ritish Ganlo	J2 Jirol Survey			ritish G	aninniral (- - - -				
				augii V	, orogical y					
2.10	B2				69.50	2.10 (0.30)	Fine to coarse brown SAN	D.		
2.50	J3				69.20	2.40	Very stiff fissured blue gre to subrounded fine to coar	y gravelly CLAY. Gravel is suba se of flint and chalk, With some	ngular	-
						(0.60)	cobbles. Clay is hard in pla	aces.		-
3.00	B3				68.60	3.00				
			~	[-	Complete at 3.00m			
	pical Survey			iritish Ge	eological	Eurvey				
				1						l
						-	155			
Plan .	• •	•			·	• •	Remarks Material too stiff for hand v	ane		
							Pit dry and stable			
						Summe				
onnan QSNU	under of the second sec		• • •		sensiti (1 .				
	· ·									
	a ang									
	• •		• • •			• • • •	Scale (approx)	Logged By	Figure No.	-
									an s times (1993)	

Circulation Circulation <thcirclinet< th=""> <thcirclinet< th=""> <th< th=""><th>Christel and Environmental Investigations Pre-Classific Control of Parametric Improvement: TP6/2 2.8 × 0.7 Control Level (mOD) Client Moder <</th></th<></thcirclinet<></thcirclinet<>	Christel and Environmental Investigations Pre-Classific Control of Parametric Improvement: TP6/2 2.8 × 0.7 Control Level (mOD) Client Moder <
Example constrained bit of the second seco	Diese Concord Level (mOD) Dieset Reinher Reinher Reinher Reinher Reinher State <
Lossition Date Engineer Bank International status Sheet International status Sheet International status Sheet	Location Date Engineer Bister Sheet
Description Parameter Freedundtoff	SS4498 E 28/77 N 130001 1000001 Parrons Brinchanoff 11 read Weith (n) Field Records (m00) (m00) Organization (m00) Description Legend read Veith (n) Field Records (m00) <
Cepth Sample / Tesk Wetry Field Records Motion Profile Completion (0.30) Description Lagred 0.50 0.51 1 </th <th>Vestor (m) Field Records Locols (0.30) (0.40) (0.4</th>	Vestor (m) Field Records Locols (0.30) (0.40) (0.4
0.50 0.60 1.1 CBR1 2.0 0.50 0.60 2.0 0.50 0.60 71.28 0.60 0.60 CORSOL 1.00 81 70.98 0.60 <th>a 240,240/Av.240.0 Embra 0 69,86 1.70 a 240,240/Av.240.0 Embra 0 69,86 1.70 c 1.70m. 69,86 1.70 Embra 0 Embra 0 c 1.70m. 69,86 1.70 Embra 0 Embra 0 Embra 0 c 1.70m. 69,86 2.10 Stiff gray motified brown CLAY with much sub-angular to auth, costant and the first or and chait, costant on a stift of the first or and chait, costant on a stift of the first or and chait, costant on a stift of the first or and chait, costant on a stift of the first or and chait, costant on a stift of the first or and chait, costant on a stift of the first or and chait, costant on a stift of the first or and chait, costant on a stift of the first or and chait, costant on a stift of the first or and chait, costant on a stift of the first or and chait, costant on a stift of the first or and chait, costant on a stift of the first or and chait, costant on a stift of the first or and chait, costant on a stift of the first or and chait, costant on a stift of the first or and chait, costant on a stift of the first or and chait, costant on a stift of the first or and chait, costant on a stift of the first or and chait, costant on a stift of the first or and chait, costant or and chait, costant or a stift of the first or and chait, costant or a stift of the first or and chait, costant or a stift of the first or and chait, costant or a stift or and chait, costant or a stift or and chait, costant or a stift or a stift or a stift or and chait, costant or a stift or a stift or a stift or and chait, cost</th>	a 240,240/Av.240.0 Embra 0 69,86 1.70 a 240,240/Av.240.0 Embra 0 69,86 1.70 c 1.70m. 69,86 1.70 Embra 0 Embra 0 c 1.70m. 69,86 1.70 Embra 0 Embra 0 Embra 0 c 1.70m. 69,86 2.10 Stiff gray motified brown CLAY with much sub-angular to auth, costant and the first or and chait, costant on a stift of the first or and chait, costant on a stift of the first or and chait, costant on a stift of the first or and chait, costant on a stift of the first or and chait, costant on a stift of the first or and chait, costant on a stift of the first or and chait, costant on a stift of the first or and chait, costant on a stift of the first or and chait, costant on a stift of the first or and chait, costant on a stift of the first or and chait, costant on a stift of the first or and chait, costant on a stift of the first or and chait, costant on a stift of the first or and chait, costant on a stift of the first or and chait, costant on a stift of the first or and chait, costant on a stift of the first or and chait, costant on a stift of the first or and chait, costant on a stift of the first or and chait, costant on a stift of the first or and chait, costant or and chait, costant or a stift of the first or and chait, costant or a stift of the first or and chait, costant or a stift of the first or and chait, costant or a stift or and chait, costant or a stift or and chait, costant or a stift or a stift or a stift or and chait, costant or a stift or a stift or a stift or and chait, cost
0.60 0.00 21 CBR1 240,240/Av. 240.0 Firm brown, CLAY with some fire to course chait and first gavet. 7.2 CBR 1.00 81 240,240/Av. 240.0 66.80 1.10 1.20 12 240,240/Av. 240.0 66.80 1.10 2.00 82 7.08 69.80 1.10 2.00 82 7.08 69.80 1.10 2.00 82 7.08 69.80 1.10 2.00 82 7.08 69.80 1.10 2.00 82 7.08 69.80 1.10 2.00 82 7.08 69.80 1.10 2.00 82 7.08 69.80 1.10 2.00 82 7.08 69.80 1.10 2.00 83 69.80 1.07 2.00 83 69.80 1.07 2.00 83 69.80 1.07 2.00 3.00 83 69.80 1.07 3.00 83 69.80 3.00 8161 for charged first to charge grave first and charge charge grave grave first and charge grave grave grave first	a 240,240Av.240.0 bitsh delayed 9 Firm brown, CLAY with some fine to cause chaik and first gave. 4 <t< td=""></t<>
0.60 CBR1 70.88 0.60 1.00 81 1.00 81 1.00 81 1.00 81 1.00 81 1.00 81 1.00 81 1.00 81 1.00 81 1.00 81 1.00 81 1.00 81 1.00 81 1.00 81 1.00 81 1.00 81 1.00 81 1.00 82 2.00 82 1.00 82 1.00 83 83 9.40,240,40,240,0 64.40 2.10 64.40 2.10 65.40 2.00 65.40 2.00 65.40 2.00 65.40 2.00 65.40 2.00 65.40 2.00 65.40 2.00 65.40 2.00 65.40 2.00 65.40 2.00 65.40 2.00 65.40 2.00 65.40 2.00 65.40 2.00 65.40 <td< td=""><td>Image: Setting or y motified borrow CLAY with much advanced to sub-order to sub</td></td<>	Image: Setting or y motified borrow CLAY with much advanced to sub-order to sub
1.00 B1 J2 J20.240.04V; 20.0 Bits 0 66.86 Cn 1.70 1.50 J2 J20.240.04V; 20.0 Bits 0 66.86 Cn 1.70 Light brown silly SAND. Construction of the toroname grive of first and chail, scenario at any scenario of the toroname grive of first and chail, scenario at any scenario of the toroname grive of first and chail, scenario at any scenario of the toroname grive of first and chail, scenario at any scenario of the toroname grive of first and chail, scenario at any scenario of the toroname grive of first and chail, scenario at any scenario of the toroname grive of first and chail, scenario at any scenario of the toroname grive of first and chail, scenario at any scenario of the toroname grive of first and chail, scenario at any scenario of the toroname grive of first and chail, scenario at any scenario of the toroname grive of first and chail, scenario at any scenario of the toroname grive of first and chail, scenario at any scenario of the toroname grive of first and chail, scenario at any scenario of the toroname grive of first and chail, scenario of the toroname grive of first and chail, scenario of the toroname grive of first and chail, scenario of the toroname grive of first and chail, scenario of the toroname grive of first and chail, scenario of the toroname grive of first and chail, scenario of the toroname grive of first and chail, scenario of the toroname grive of first and chail, scenario of the toroname grive of first and chail, scenario of the toroan toroan of the	a 240, 240/Av. 240,0 Binsh (69.99 English (1.70 240, 240/Av. 240,0 Binsh (69.99 English (1.70 31.70m. 0.64.8 C.070 66.78 2.10 66.78 2.00 66.78 2.00 66.78 2.00 66.78 2.00 66.78 2.00 66.78 2.00 67.79 Stiff gray motified bown CLAY with much sub-argular to mathematication of the sub-argular to mathemathmetication of the su
1.50 J2 1.70 Cell 240,04Pa 2.80 B2 1.70 Cell 240,04Pa 2.80 B2 J3 Cell 240,04Pa 2.80 J3 3.00 B3 B13 Gell 2 Sepage(1) at intermined by Rame Gell 2 J3 Gell 2 Gell 2 Gell 2 J3 Gell 2 J3 Gell 2 J3 Gell 2 J3 Gell 2 J4 Gell 2	Pa 240,243/(v,240.0) Bitsi G 69.88 End (170) B8.48 2.10 (0.40) 68.78 2.00 68.78 2.80 69.78 2.80 69.78 2.80 69.78 2.80 69.78 2.80 69.78 2.80 69.78 2.80 69.78
1.50 J2 J2 240,240,04Pa 240,240,04Pa 98,88 98,88 170 0,040 2.00 B2 J3 98,88 100 0,040 581 gray molified brown CLAV with much sub-angular to sub-angular	240, 240,240,240,0 Beits 6 99,80 240, 170 0.40 99,80 210 0.40 0.40 99,80 210 0.40 99,80 210 99,80 210 99,80 210 99,80 210 99,80 210 99,80 210 90,80
2.00 B2 J3 Seriespet(1) at 1, 7,700, 10, 10, 10, 10, 10, 10, 10, 10, 10,	Sectadp(f) at Underty empty of Lag (0,40) 1,70m. 69,48 2,10 68,76 (0,70) 68,76 2,80 68,76 2,80 68,58 3,00 1.1 2,80 68,58 3,00 2.10 Stiff gray motified brown CLAY with much sub-angular to asub-angular to asu
2.50 J3 2.50 J3 3.00 B3 B3 68.78 2.50	99.48 - 2.10 Stiff grey motified brown CLAY with much sub-angular to sub-rounded fine to coarse gravel fint and chaik, occasional and the pocket.
2.50 J3 J3 Image: Second	British Geological Survey British Geological Survey British Geological Survey British Geological Survey
3.00 B3	68.78 2.80 68.78 2.80 68.78 0.20 68.78 0.20 68.78 0.20 68.78 0.20 68.78 0.20 68.78 0.20 68.78 0.20 68.78 0.20 68.78 0.20 68.78 0.20 68.78 0.20 68.78 0.20 68.78 0.00 68.78 0.00 68.78 0.00 68.78 0.00 68.78 0.00 68.78 0.00 68.78 0.00 68.78 0.00 68.78 0.00 68.78 0.00 68.78 0.00 68.78 0.00 69.78 0.00 69.78 0.00 69.78 0.00 69.78 0.00 69.78 0.00 69.78 0.00 69.78 0.00 69.78 0.00 69.78 0.00 69.78 0.00 69.78 0.00 69.78 0.00 69.78 0.00 6
3.00 B3 Set 58 - (0.20) Set 64 or 0.0.4 With Founded gravel and weaky centented 3.00 B3 Set 58 - (0.20) Set 64 or 0.0.4 With Founded gravel and weaky centented British Geological Surrey British Geological Surrey British Geological Surrey Complete at 3.00m Plan Settish Geological Surrey Settish Geological Surrey 	88.58 0.200 Soft data crow with rounded graver and weaky cemented Soft data crow with rounded graver and weaky cemented Complete at 3.00m Soft data crow with rounded graver and weaky cemented Complete at 3.00m Soft data crow with rounded graver and weaky cemented Complete at 3.00m Soft data crow with rounded graver and weaky cemented Complete at 3.00m Soft data crow with rounded graver and weaky cemented Complete at 3.00m Soft data crow with rounded graver and weaky cemented Complete at 3.00m Soft data crow with rounded graver and weaky cemented Complete at 3.00m Soft data crow with rounded graver and weaky cemented Complete at 3.00m Soft data crow with rounded graver and weaky cemented Complete at 3.00m Soft data crow with rounded graver and weaky cemented Complete at 3.00m Soft data crow with rounded graver and weaky cemented Complete at 3.00m Soft data crow with rounded graver and weaky cemented Complete at 3.00m Soft data crow with rounded graver and weaky cemented Soft data crow with rounded graver and weaky cemented Soft data crow with rounded graver and weaky cemented Soft data crow with rounded graver and weaky cemented Soft data crow with rounded graver and weaky cemented graverand graverand graver and weaky cemented graverand graverand grave
British Geological Survey	Image: Second Superson Second Second Superson Second Second Superson Second Superson Second
British Geological Survey British Geological	British Geological Survey British Geological Survey
British Geological Survey British Geological Survey British Geological Survey Plan Plan Plan British Geological Survey Bri	British Geological British Geological British Geological British Geological Surrey British Geological British Geological British Geological Surrey British Geological British Geological British Geological British Geological British Geological Surrey British Geological British Geological British Geological British Geological Surrey
British Geological Survey British Geological Survey British Geological Survey Plan Plan Plan Plan British Geological Survey British Geological Surve	British Ceological British Ceological British Geological Survey British Geological British Geological Survey British Geological Survey British Geological British Geological Survey British Geological Survey
British Geological Survey British Geological	Image: Setting of the setting of t
Plan Plan Plan Plan Plan Plan Plan Plan	Image: Second
Plan	Image: Second
Plan	. .
Plan Remarks Plan Plan	. .
Plan	Remarks . . . <t< td=""></t<>
Plan	Fe Remarks In-situ CBR determined by TRL penetrometer Pritish Geological Survey British Geological Survey
In-situ CBR determined by TRL penetrometer Pit stable British Geological Survey British Geological Survey British Geological Survey	
British Geological Survey British Geological Survey British Geological Survey British Geological Survey	British Geological Survey British Geological Survey British Geological Survey
aniish Geological Survey Bhitsh Geological Survey Bhitsh Geological Survey	Geological Survey
· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · ·	
Scale (approx) Logged By Figure No.	Scale (approx) Logged By Figure No.

	IAN FA	ARME	R ASSOCIAT	TES		Site		Trialpi
	Geotechnic	al and En	vironmental Investige	ations		A428 Caxton Common to	Hardwick Improvement	TP6
Excavation JCB 3CX	Method ical Survey	Dimension 2.6 x 0.7	s British (Ground 71.36	I Level (mOD) UNSY	Client Highways Agency	British Geological Survey	Job Numbe 2203
		Location 534667	E 259768 N	Dates	01 -	Engineer Parsons Brinckerhoff		Sheet
Depth (m)	Sample / Tests	Water Depth	Field Records	Level (mOD)	Depth		Description	Legend
		(m)			(Thickness)	TOPSOIL		
				71.06	0.30	Firm brown CLAY		
0.50	J1 CBR1			70.76	0.60			
1.00						Stiff fissured light blue grey sub-rounded fine to coarse	CLAY with much sub-angular to gravel of chalk and flint.	•
1.00	81				- (1 20)			
					(1.20)			
1.50	J2				-			
errush Geolog				69.56	1.80	Brown slightly clavey SAM	British Geological Suivey	ided
2.00	B2			69.16	(0.40)	gravel of carying lithologies		
						Stiff blue grey mottled brow sub-rounded fine to coarse	n CLAY with much sub-angular gravel of flint and chalk.	to
2.50	J3			1	(0.80)			
3.00	B3			68.36	3.00			
						Complete at 2 00m		
						Complete at 5.00m		
					_			
British Geolog	ical Survey			eological a	E LIIVev			
					_			
				[- 1			
					-			
	1							
)						21	
Plan .	 			IĒ		Remarks		[[
		J				In-situ CBR determined by T Pit dry and stable	RL penetrometer	
	• •			•	• •			
British Geolog	ical Survey	•	. Britshi	Seological S	uvey .			
	• •				•••			
		•			[
•	•			•	· ·	Scale (approx)	Logged By	Figure No.
					1			

	IAN F.	4RM	ER /	ASSOCIAT	<u>TES</u>		Site A428 Caxton Common to Hardwick Improvement	Borel
Boring Met	Geotechnic	al and	Environ	nmental Investig	Ground	Level (mOD)	Client	loh
Cable Perc	cussion	150r	nm Case	d to 1.50m	71.45	Level (mob)	Highways Agency	Num
		Locatio	n	Brits	Dates	Survey	Engineer	Shee
		5350	083 E 259	801 N	18/09/	01 - 01	Parsons Brinckerhoff	1
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Leger
0.00-0.50	B1						TOPSOIL	
					71.15	0.30)	Firm, brown, slightly sandy, gravelly to very gravelly CLAY. Gravel	
					70.65	(0.50) 0.80		
						in liet	Stiff/very stiff, brown / grey mottled, gravelly CLAY. Gravel is fine to coarse, sub-angular to sub-rounded of flint and chalk	
1.50-1.80 1.50-1.95	SPT 55*/150 B2			5,7/26,29				
						ē. –		·
2 25 2 20				100 blows Pritic	n koolonical	(2.70)	British Gonlarical Sumov	
2.25-2.10				TOD DIGWS DILLS	rveuvyivai	MILE		
2.70	J1							
3.00-3,45	SPT N=26			4,6/6,6,7,7		-		1
5.00	52							
					67.95	3.50	Very stiff, fissured blue grey gravelly CLAY. Gravel is fine to	
3.75-4.15	02			100 blows	3		coarse, sub-angular to sub-rounded flint and chalk	
4.15	J3					-		
4.50-4.95	SPT N=28			5,6/8,7,6,7				
4.50	J4							
5.50-6.00 5.50-5.95	B3 U3 N/R			100 blows	1			
	gical Sulvey			Billis	i neological	ourvey		
	~							
6.50-6.61	SPT 50*/110			36,14/		-		
6.50	J5		1					
7 50 7 00	114			100 blows	1			
1.50-7.90	04			TOU DIGWS	1	.1.1.	· *	
7.90	J6							
						Li Li		
8:50-8.95 8.50	SPT N=39		_	7,9/9,10,10,10				
							• •	
						1	5.2.1.5. A. A. A. A.	
British Geold 9 50-9 95	ucal Survey			100 blows	n beological	eurvey		
0.00-0.00								
					1		l	
emarks DRY Chiselling fro	om 0.00m to 1.00m	for 1.5 ho	urs,				Scale (approx	By By
							1:50	PE
							Figure	NO.

	IAN F. Geotechnic	ARM cal and	Enviror	ASSOCIAT nmental Investigat	<u>ES</u> tions		Site A428 Caxton Common to Hare	dwick Improvement		Boreho Number 6/11
Boring Met	hod ussion	Diamet 150r	er mm Case	d to 1.50m British	Ground 71,45	I Level (mOD) Survey	Client Highways Agency	British Geological Survey	Yey Job Number 2203 Sheet 2/2	
		Locatio	on 083 E 259	9801 N	Dates 18/09/0 18/09/0	01 - 01	Engineer Parsons Brinckerhoff			
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description			Legend
10.50-10.95 10.50	SPT N=40 J8			6,88/8,9,11,12			See previous description.			
11.50-11.85	U6			100 blows		and and a second				
11.85 12.00-12.50	J9 JEA JICAI SURVEY			British 1	leological	HINEY				
12.50	J10			0,10711,14,13,14		anal Man Man Man Man Man Man Man Man Man Man				
13.50-13.85	U7			100 blows		: 				
13.85	J11					(14.50)		-		
14.50-14.87 14.50	SPT 51*/220 J12			8,10/16,17,18						
15.50-15.85 51151 0500 15.85	gical Survey J13			100 blows British	Seological	Survey				
16.50-16.87 16.50	SPT 61*/220 J14			12,17/19,19,23						
17.50-17.85	U9			100 blows						
17.85	J15				53.45	18.00				<u></u>
						i.l.a.t.l.a.	Complete at 18.00m			
British Geold	gical Survéy			British	Seological	Survey				
emarks									Scale	Logged
DRY									(approx)	PB
									Figure	No.

IA Geo	N F2 otechnic	ARMI al and E	ER ASSOCI	[AT] estigati	ES ions		A4	e 128 Caxtor	n Commo	n to Hardv	wick Impro	ovement			6/11			
Water Monitoring	gy	Interna Diame	al Diameter of Tube [A] ter of Filter Zone = 150	= 19 mm mm	n Jeological S	Survey	Hi	ghways Ag	Jency		British G	eological	Survey		Number 2203			
		Location 53508	3 E 259801 N		Ground 71.45	Level (m	DD) Eng Pa) Engineer Parsons Brinckerhoff							Sheet 1/1			
egend S (A)	Level (mOD)	Depth (m)	Description					G	roundwa	ter Strike	s During	Drilling						
	70.95	0.50	Concrete		Date ,	Time	Depth Struck (m)	Casing Depth (m)	Inflov	v Rate	5 min	Read	lings 15 mln	20 min	Depth Seale (m)			
			Toofiil															
			British (Je	, British (British Ge				Gr	oundwate	er Observ	ervations During Drilling				
					Date		Denth	Start of SI	hift Water	Water		Denth	End of Sh	ift Water	Wator			
						Time	Hole (m)	Depth (m)	Depth (m)	Level (mOD)	Time	Hole (m)	Depth (m)	Depth (m)	Level (mOD)			
	65.45	6.00																
	64.45	7.00	Bentonite Seal															
			Sand Filter															
	63.25 62.95 62.45	8.20 8.50 9.00	Piezometer Tip Sand Filter					Instru	iment Gr	oundwate	er Obser	vations						
			Bentonite Seal		Inst.	[A] Type	: Piezom	eter										
	61.45	10.00		British (eological (Instrument [A] LIDEY British G				Sedin rich Surger Remarks								
					Date	Time	Depth (m)	Level (mOD)										
					24/10/01 06/11/01 13/11/01		0.35 0.72 0.56	71.10 70.73 70.89										
7																		
5			General Backfill				-											
				British (eological S	urvey												
Remarks	53.45	18.00	·				1											

	IAN FA Geotechnic	ARM al and	ER /	ASSOCIAT.	ES tions		Site A428 Caxton Common to Hardwick Improvement	Boreho Number 6/16/
Boring Meti Cable Perc	hod ussion	Diamet 150r	er nm Cased	d to 1.50m	Ground 71.40	Level (mOD)	Client Highways Agency	Job Number 2203
		Locatio 535	n 186 E 259	1793 N	Dates 20/09/0 21/09/0	01 - 01	Engineer Parsons Brinckerhoff	Sheet
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
0.00-0.75	B1			14	71.20	0.20	TOPSOIL	
	i.					(0.70)	Firm, brown, with a little grey brown mottling, gravelly CLAY. Gravel is fine to coarse, sub-angular to sub-rounded of flint and chalk	
0.75-1.20	U1			60 blows	70.50	0.90		
1 25	11						Firm, brown / grey mottled, gravelly CLAY. Gravel is fine to coarse, sub-angular to sub-rounded of flint and chalk	
1.50-1.95	SPT N=14			2,4/3,3,4,4				
1.50	J2			2 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		7		
	0					(2.00)		
2.25-2.70	ical <mark>92</mark> vey			80 blows British (eológical	tilley		
0.75	10							
3.00-3.45	33 SPT N=19			2.4/4.4.5.6	68.50	. 2.90		
3.00	J4						Stiff becoming very stiff with depth, fissured blue grey gravelly CLAY. Gravel is fine to coarse, sub-angular to sub-rounded flint	
							and chalk	
3.75-4.20	U3			80 blows			~	
4.25	J5 SPT N=21			4 5/5 5 5 6			8	
4.50	J6			1010101010				
	9			ις.		-		· · · · ·
						-		
5.50-5.95	U4			85 blows				
British Geolo 5 95	ical Survey			British (leological	Stilley		
0.00	57							
6.50-6.95	SPT N=26			3,5/6,6,7,7				
0.50	70							
7 50 7 05	115			100 blowe				
1.00-1.90	05			NO DIONO			* ×	
7.95	J9	14 B	1					
						Li li		
8.50-8.95 8.50	SPT N=26 J10		-	5,6/6,6,7,7				
	(1)(1)(1)		5					
NULLE I								
9.50-9.95	UGE SUIVEY UG			100 blows	reorogical			
9.95	J11			nee all there are		<u> </u>		
emarks DRY							Scale (appro	x) By
							1:50	РВ
							Figure	No.
							2	203.6/16A

	IAN F	ARM	ER /	ASSOCIAT	ES		Site A428 Caxton Common to Ha	rdwick Improvement		Boreho Numbe 6/16
Boring Meth	lod ussion	Diamet 150r	er nm Case	d to 1.50m British Ge	Ground 71.40	Level (mOD)	Client Highways Agency	British Geological Survey		Job Numb 220
		Locatio	n 186 E 259	793 N	Dates 20/09/	01 -	Engineer Parsons Brinckerhoff			Sheet
Depth (m)	Sample / Tests	Casing Depth	Water Depth	Field Records	Level (mOD)	Depth		Description		Legen
10.50-10.95 10.50	SPT N=31 J12	(11)		5,8/7.8,8,8			See previous description. Below 10.50m: Very stiff			
11.50-11.90	U7			100 blows						
11.90 British Geolog 12.50-12.95 12.50	al Suivey SPT N=39 J14			British Ge 8,8/9,9,10,11	ological S	ovey				
13,50-13.90	U8			100 blows						
13.90	J15					(15.10)		2		
14.50-14.95 14.50	SPT N=48 J16			7,9/12,11,11,14			*			
15.50-15.85 Britsh Geolog 15.85	u9 al Suvey J17			100 blows British Gi	ological S	myey 				
16.50-16.88 16.50	SPT 48*/225 J18		1	10,13/15,15,18						
17.50-17.90	U10			100 blows				2		
17.90	J19		-0	9 7	53.40	18.00	Complete at 18.00m			<u></u>
British Geologic	SUNC)			s British G	ological S					
Remarks DRY									Scale (approx	Logge By
									1:50	РВ
									Figure	Vo.

	LAN F.	ARME	R ASS	OCIAT	ES		Site A428 Caxton Common to	Hardwick Improvement	Trialpi Numb
Excavation Komatsu t	n Method tracked	Dimension 2.5 x 0.	s S	al Investiga	Ground 71.16	I Level (mQD)	Client Highways Agency	Dritish Castaniasi Qumay	Job Numbe 220
excavator		Location		Billisii G			Engineer	Bhush Geological Sulvey	Shoot
		535292	E 259829 N		17/09/ 17/09/	01 - 01	Parsons Brinckerhoff		1/1 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Re	ecords	Level (mOD)	Depth (m) (Thickness)		Description	Legend
						(0.40)	TOPSOIL		
					70.76	0.40 (0.50)	Firm brown gravelly CLA	1	
1.00	В1				70.26	- 0.90 -	Stiff grey mottled brown g sub-angular to sub-round	ravelly CLAY. Gravel is fine to co	arse,
					69.66	1.50			
	gical Survey				ological S	envey	Stiff fissured dark grey br chalk and flint.	own / grey mottled gravelly CLAY	of
2.00	B2								
						. (2.30)	Large orange brown sa	ind and gravel pocket at 2.6. Som	e
							large pckets of dark gr	ey brown silty fine sand below 3.0	m
3.30	В3								
4.00	В4			÷	67.36	3.80 (0.70)	Very stiff fissured grey gra sub-angular to sub-rounde some small boulders.	welly CLAY. Gravel is fine to coar of chalk and flint with some cobble	se, es and
4.50 h (senin	ical 31 rvev			British G	66.66	4.50		Aniish Genindical Survey	
onion o o ore	ioniourioj			Dillon o	oorogiour		Complete at 4.50m	nun nondinu nundi	
								·	
Plan .							Remarks Pit dry and stable		
• •			· .		•				
British Geolo	gical Survey		• •	British G	eological S	šuvey .			
	· ·		· ·		•				
							Scale (approv)	Logged By	Figure No.
							Scale (approx)	Logged by	rigure no.

	IAN Geote	FA echnical	RME and Env	R ASS	OCIAT al Investiga	TES tions		Site A428 Caxton Common	to Hardwick Improvement	N N T
Excava	ion Method	D	imensions			Ground	Level (mOD)	Client		Je
JCB 30	X		2.6 x 0.7		Dritials A	70.45		Highways Agency	Dritich Coologiaal Durnau	"
British Ge		1	ocation		HIIISU P	Dates	IIIVey	Engineer	HOUSD GEOLOGICAL SUIVEY	. SI
			535622 E	259795 N		10/09/ 10/09/	01 - 01	Parsons Brinckerhoff		
Depti (m)	Sample /	Tests D	Vater epth (m)	Field Re	cords	Level (mOD)	Depth (m) (Thickness)		Description	Le
						70.16	(0.30)	TOPSOIL		
0.50	J1		1			10.16	(0.30)	Firm brown CLAY		-
						69.86		Stiff fissured brown and subangular to subrounde with occasional 500mm	grey mottled brown CLAY with n ed fine to coarse gravel of flint an pockets of brown sand and gree	nuch nd chalk n silt.
1.00	81									
1,50	J2						. I			
	olocical Survey					ological S	ENev .			
2.00	B2						(3.10)			
							[. [.].			
2.50	13						12.4.			
3.00	B3									
							i. l. i.			
3.50	34							5		
						66.76	3.70 (0.50)	Stiff to very stiff blue grey subrounded gravels of fir	CLAY with much subangular to to coarse flint and chalk.	
4.00	B4					66.26	4.20		·	
5 11 A	1	1	1		0.11.1.0		-	0		
	xionical Survey				Bittish o	eological a	uvey	Complete at 4.20m		
		Ì			1					
			1				_			
							-		· · · · · · · · · · · · · · · · · · ·	
Plan			•			•	· ·	Remarks Pit dry and stable		
		•		· ·	•	·				
British Gei	logical Survey			• •	British G	eðlogical S	urvey			
•						•				
•										
11 million								Scale (approx)	Logged By	Figure No.
-								1.40		2203.1P

	IAN F. Geotechnic	ARM	ER A	ASSOCIAT	ES tions		Site A428 Caxton Common to Hardwick Improvement	Borehol Number 7/8	le
Boring Me	thod	Diamet	ter		Ground	Level (mOD)	Client	Job	_
Cable Per	cussion	150	mm Case	d to 1.50m	68.00		Highways Agency	2203	r
		Locatio	on	<u>Prilich</u>	Dates	Survey	British Geological Sunay Engineer	Sheet	
		535	857 E 259	9795 N	10/09/ 10/09/	01 - 01	Parsons Brinckerhoff	1/1	
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	
					67 70	(0.30)	TOPSOIL		
0.30-0.60	B1					0.30	Stiff, brown / grey mottled, gravely CLAY. Gravel is fine to coarse angular to sub-rounded, with occasional small chalk cobble		l
0.60-1.00	U1			40 blows	ļ	i luti			
1.00	J1			3	1			::	
						1			
1.50-1.95	U2			40 blows					
1.05	12								
Deficie Osci	JZ Misel Ourse			nation:	a alkata-	(3.50)			
2.50-2.95	U3			40 blows	peologica	e			
						E			
2.95	J3						Dark grey brown / grey mottled below 2.95m		
3.50-3.95	U4			50 blows					
3.95	14				64.20	3.80	Stiff, fissured grey gravely CLAY. Gravel is fine to coarse,	· ·	
4.00-4.50	B2						Sup-angular to sub-rounded criality		
4.50-4.95	U5			50 blows		-			
4.95	J5					(2.20)			
5.55-6.00	U6			50 blows					
British Geol 6 00	opical Survey			British	62.00	Survey	British Geological Survey		
					02.00				
						-	Complete at 6.00m		
					8				
						E-			
						i lu			
						E			
						1.1.1			
	i is		-						
	÷ .					Li-Li-			
					ļ				
	opical Survey			: British	Geologica	Survey			
	× .					111			
emarks DRY							Scale (appro	Logged By	
							1.50	00	
							Figure	No.	-
e								2202 7/9	

	CONTRACT	Cambridge	Northern By-Pass	•		REPOR	TN	0. 8639/SEQ	
	ical Suney	 Description	British Geological Survey	Scale 20m	m=1.4.	Sample	16 (15	33.10. 54 89	S.P.T.
		Descriptio	n	Depth	Legend	Ref.No.	Туре		blows/ft
	Hard dark with very (CI to CH	grey silty occasional H)	boulder clay, veins of sand (Cont [®] d.)			2158	J	9.50	
	A.				ľ	2159	U	10.30-10.75	
	8				$\mathbb{H}^{(1)}$	2160	J	11.00	
	κ τ		и к т.			2161	U	11.80-12.25	
	cal Suivey					8m 2162	h Geo J	ogical Survey 12•50	
						2163	U	13.30-13.75	
						2178	J	14.00	
						2164	ט	14.80-15.25	
	gcal Survey					2165	J Geo	15.50 ogical Survey	
						2166	ט	16.30-16.75	
						2167	J	17.10	
						2168	J	17.75	
			\$		Ð	2169 2170	J U	18.30 18.50-18.95	
	gital Survey					2171	J Sh Geo	19•25 ogical Survey	
ż						2172	U	20,00-20,45	
						2173	J	20,75	

	IAN F.	ARME	R ASSOCIA	TES gations		Site A428 Caxton Common to H	ardwick Improvement	Trialpit Number TP7/15
Excavation JCB 3CX	Method dical Survey	Dimension 2.6 x 0.	ns 7 Britis	Groun 61.89	d Level (mOD) Survey	Client Highways Agency	British Geological Survey	Job Number 2203
		Location 536297	E 259889 N	Dates 11/09 11/09	/01 - /01	Engineer Parsons Brinckerhoff	Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD) Depth (m) (Thickness)		Description	Legend
					- (0.30)	TOPSOIL		
0.50	.11			61.59	0.30 (0.30)	MADE GROUND: Firm to st	iff, fissured, brown CLAY with so	me
0.60	CBR			61.29	0.60	MADE GROUND: BOULDEI	RS AND COBBLES with clayey	
1.00	B1				(0.80)	pockets.		
1.50	J2			60.49	- 1.40	Stiff, fissured, blue grey mot	ted brown CLAY with a little to s	ome
British Geold	gical Survey			sh Geologica	eurvey	Source graver or suba	British Geological Survey	
2.00	B2				-			
-								
2.50	J3				- (2,70)			
		1			-			
3.00	83							
3.50		20 5	~					
4.00	B4					Very stiff at 4.0		
				57.79	- 4.10			
British Geol	gical Survey			sh Geologica	Burvey	Complete at 4.10m		
	~							
1				1				
Plan	1				<u>E</u>	Remarks		ll
					· ·	Trial pit was dry and stable. In-situ CBR determined by T	RL Penetrometer.	
	· ·		· · ·	·				
British Geolo	gical Survey			sh Geologica	Survey			
				5 M				
·				•	× · F	Scale (annov)	Logged By	iqure No
						Scale (approx)	rogger by f	gure no.
Boring Me Cable Per Depth (m)	thod cussion unpy Sample / Tests	Diamet 150 Locatio 536 Casing Depth	er mm Cased on 570 E 259	d to 1.50m British	Ground 58.59	Level (mOD)		-+
--	---	--	-----------------------------------	---------------------------	---------------------------	-----------------------------	---	--------------------
Depth (m)	Sample / Tests	Locatic 5365 Casing Depth	on 570 E 259			Survey	Client Highways Agency British Geological Survey	Job Numb 220
Depth (m)	Sample / Tests	Casing Depth		867 N	Dates 06/09/ 06/09/	01 - 01	Engineer Parsons Brinckerhoff	Sheet
0.30-0.60	1	(m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend
0.30-0.60				9	58 29	(0.30)	TOPSOIL	
0.00 4 05	B1				00.20	0.30	Firm to stiff, slightly fissured brown/grey mottled gravelly CLAY. Gravel is fine to coarse, sub-angular to sub-rounded of flint and	·
0.60-1.05	U1			80 blows	{		chalk	
						-		
1.05	J1					5		
1.50-1.95	U2			60 blows				
1.95 h Geol	odical ³² urvev			.: British	Geolodica	(3 70)		
					p	E (0.70)		
2.50-2.95	U3			75 blows		E		<u>.</u>
2.95	J3			a. *				
		1				-		
3.50-3.95	U4			75 blows				
0.05	1			л. Эл. ¹ ан		-		
4.00-4.50	B2			12 C	54.59	4.00	Stiff, fissured grey gravelly CLAY. Gravel is fine to coarse,	
4 50 4 95	115			100 blows		E.	cobbles	
4.60-4.80	B3			100 blows				
5 00-5 45	116			80 blows		E	4.60 to 4.80m: Rock layer (Driller's description)	
								·
5.45	J5			Dritiah	Poologiag			
DHUSH OHU	ugical bulvey			DINSI	peoloĝica	Sulvey E		
6.00-6.45	U7			80 blows				
6.45	J6						ж.	
	1							
7.00-7.45	U8			75 blows		(6.00)		1.1.
7.45	J7				1			
					{	-		
8.00-8.45	U9			80 blows				
					[5. lai		
8.45	J8							
						E.		
9.00 Diffish Geo	i gical Survey			British	Geologica	Eurvey		
						i.		
9.55-10.00	U10			80 blows			Complete at 10.00m	· · · ·
10.00	J10				48.59	10.00		
Remarks		·					Scale	Logge
DRY Chiselling fr	rom 4,60m to 4.80m	for 0.5 ho	urs.				(appro	bx) By
							1:50	JG
							Figur	e No.

		CONTRACT C	ambridge Norther	n By-Pass	•	Brish	POINT	HI NO. 8639/	SEQ
N A	(*)	Client	astern Noad Cons	truction	Unit.		Ground	63.50 m	• O • D
		Site Address G	irton - Milton, (Cambridge	shire.	B	oring (oring (Commenced 1 Completed 1	1.6.71
		Type and Dia. of Bon H	ng and Auger 200 m	m. diamet	er.	-	n : 3	672.597	5
		Water Strikes	1	Water L	evels Reco	rded Durin	g Bor	ing m	
		1. None 2. 3.	Hole Depth Casing Depth Water Level	ся 17					
		Remarks	*	<u> </u>			1	<u>,</u>	L
		Desc	British Geological Suivey cription	Scale 20r	nm = j m	Sample	s olog (al Suney Depth	S.P.
		Made ground (gr clay, gravel, t	cy-brown sandy opsoil and piece	S Depth		HOT. NO.	туре	m	- n
		Firm brown and	grey mottled	1.00		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		0.19	
		chalk. (CI	to CII)	1.50		5557	J	1.50	
871									
		a a a			lindua				
		• •							
		a			front	British I			8
					Intra				

	IAN F. Geotechnic	ARM cal and	ER ASSOC	CIAT.	ES		Site A428 Caxton Common to	Hardwick Improvement	Trialpi Numbe TP8/	t 2
Excavation JCB 3CX British Geolor	n Method	Dimens 2.6 :	sions x 0.7	British G	Ground 58.38	Level (mOD)	Client Highways Agency	British Geological Survey	Job Numbe 220:	er 3
		Locatio 5372	265 E 259716 N		Dates 06/09/0 06/09/0	01 - 01	Engineer Parsons Brinckerhoff		Sheet	
Depth (m)	Sample / Tests	Water Depth (m)	Field Record	ls	Level (mOD)	Depth (m) (Thickness)		Description	Legend	I
					58.08	(0.30)	TOPSOIL			N/L
0.50	J1				57.78	(0.30) 0.60	Firm brown CLAY with son subangular gravels of flint	ne fine to coarse subrounded to and chalk.	۰ •	
1.00	B1					- - - -	Stiff fissured blue grey mot coarse subangular to subre	ttled brown CLAY with much fir bunded gravels of flint and cha	ik.	
			N			i.I.I.I				
1.40 1.50 Dritich Contor	J2		No penetration/Av.	Drittak (1	aladiaal (
2.00	B2			DHUƏH U	culuyical a	(2.50)	From 2.10 - 2.10m Jac	Diffian Geological aurysy		
2.40	205.3kPa		180,220,216/Av.				From 2. 10 - 3. 10m - larg	je sinstone erratics encountere		
2.50	J3		205.3			. 1. 1. 1				
3.00	B3				55.28	3.10	At 2.90m - large siltston	e boulder encountered at base	of pit.	
	-						Complete at 3.10m			
						* * * * * *				ł
								,		
	ical Survey			l British G	eological I	NIVEV				
						-				
								- -		
Plan .	•	• _	•••				Remarks Pit dry and stable			
* *										
British Geolo	gical Survey		· •.	British G	eological S	iurvey •				
		·		•		• •	Scale (approx)	Logged By	Figure No.	
		•	• •				1:40	JG	2203.TP8/25	

	IAN F.	ARM	ER /	ASSOCIAT	ES		Site A428 Caxton Common to Hardwick Improvement	Boreh Numbe 9/1
Boring Met	hod	Diamet 150r	er mm Case	d to 1.50m	Ground	Level (mOD)	Client	Job Numbr
				British G	60.76	Suney	British Geological Survey	220:
		Locatio 5374	on 494 E 259	9680 N	05/09/0	01 -	Engineer Parsons Brinckerhoff	Sheet
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m)	Description	Legend
			,				TOPSOIL	
0.30-0.70	B1				60.48	- (0.30) - 0.30	Firm/stiff, slightly fissured grey mottled brown gravelly CLAY.	
0 75-1 20	114			30 blows		Ë.	Gravel is fine to coarse, sub-angular to sub-rounded chalk, flin	
0.75-1.20	01			30 blows		É		
1.20	J1							
1.50-1.95	SPT N=14			3,2/3,3,4,4				
				2)		-		
1.95	J2			Drittisk ()	satsatzati	E- E- Ellaunte		
2.25-2.70	U2 U2			45 blows	cological	SUIVE)		
				5.e		(4.50)		
2.70	J3			in the second		-		
3.00-3.45	5PT N=19			3,3/4,5,4,6		-		
3.45	.]4			er á				
3.75-4.15	U3			50 blows				
	10.000						2	
4.15	J5							
4.50-4.95	SPT N=23	10		3,4/5,6,6,6				
					55.98	4.80	and the second	
4.95 5.00-5.50	J6 B2						Stiff becoming very stiff with depth, blue grey, gravelly CLAY. Gravel is fine to coarse, sub-angular to sub-rounded chalk, fin	
				2272				
British Geolor	ical Survey			50 plows British (eological	Aurvey :		
5 95	.17							
						Ē		
6.50-6.95	SPT N=33			5,6/8,7,9,9				
1							Below 6,50m: Very stiff	
6.95	J8			23				
								· · · ·
7.50-7.95	U5			60 blows			8	
7.95	Ja					Ē		
8 50-8 95	SPT N=44		_	6 6/10 11 11 12				
5.00-5,50	01111-44	1		0,010,11,11,14				
8.95	J10					E		
British Geolo	ical Survey			British (eological	Nine)		
9.50-9.90	U6	2		75 blows		È		
			1					
9.90	J11					(10.20)	c	10 1 00000
DRY							Sca (ap)	brox) By
							1:	50 JG
							Fig	ure No.

	IAN F. Geotechnic	ARM	ER Z	ASSOCIAT amental Investigat	<u>ES</u> tions		Site A428 Caxton Common to Har	dwick Improvement	B	orehol umber 9/1
Boring Met Cable Perc	hod ussion	Diamet 150r	er nm Case	d to 1.50m	Ground 60.78	Level (mOD)	Client Highways Agency		Jo	2203
		Locatio	n 194 E 259	1680 N	Dates 05/09/ 05/09/	01 - 01	Engineer Parsons Brinckerhoff	- Olavi Googla Carey	SI	heet 2/2
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)		Description	Le	gend
10.50-10.95	SPT N=52			7,8/11,12,14,15			See previous description.			
10.95 11.50-11.95	J12 U7			80 blows						
11.95 Dritich Goolo	J13			Dritich	Indiatical					
12.50-12.95	SPT N=64 J14			11,10/14,15,16,19	weene group ca	(10.20)				
13.50-13.95	U8			80 blows					- 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4	
13.95	J15			10 11/15 17 10 00				~		
14.55-15.00 15.00	SPT N=70 J16			10,11/15,17,18,20	45.78	15.00		(111)		
							Complete at 15.00m	2		
British Geold				• British :	Geological	Burvey				
							N	Ŷ		
British Geoló	jicál Survey				Geological					
Remarks DRY									Scale (approx) By	ogged /
									1:50 Figure No.	JG

			NF	4RM	ER ASSOCIA	<u>TES</u>		Sit	e 128 Caxto	n Commo	n to Hard	wick Impr	ovement			Borehole Number Q/1
Installa Water	ition 1 Monil	Type toring	Diechnic	Dimension Interna Diame	nvironmental Investig ons al Diameter of Tube [A] = 19 eter of Filter Zone = 150 mm	gations		СІІ	ent ghways A	gency		Dritish (Dimen		Job Number 2203
				Location	4 E 259680 N	Ground	Level (m	OD) En	gineer			Unuan U	reological	ouncy		Sheet
	1					60.78		Pa	arsons Bri	nckerhoff		_				1/4
egend	Wat	(A)	Level (mOD)	Depth (m)	Description		1	1	G	roundwa	ter Strike	s During	Drilling	linge		
			60.28	0.50	Concrete	Date	Time	Struck (m)	Casing Depth (m)	Inflo	v Rate	5 min	10 min	15 min	20 min	Depth Sealed (m)
						- - -										
					Cement/Bentonite Grout											
			3		с.	<u> </u>										
	11112		57.28	3.50	· Briti	sh (<u>Leologica</u>	SUNAY		Gr	oundwat	er Observ	ations D	ouring Dr	illing Suivev		
					Bentonite Seal	Date	Time	Depth Hole	Casing Depth	Water Depth	Water Level	Time	Depth Hole	End of Sh Casing Depth	Water Depth	Water
	N. N. K.		56.28	4.50				(m)	<u>(m)</u>	<u>(m)</u>	(mOD)		<u>(m)</u>	<u>(ṁ)</u>	(ṁ)	(mOD)
	5100 A.M.			:	Sand Filter											
	11000		54.78 54.48	6.00 6.30	Piezometer Tip											
	ſ		54.28	6.50	Sand Filter Bentonite Seal		<u> </u>		lasta					I		
			53.28	7.50		inst	(A) Type	: Piezome	ter		Junuwate					
							ins	trument (A]							
			<u>ay</u>			Date	Time	Depth (m)	Level (mOD)				Rema	arks		
				54 142		14/09/01 21/09/01		DRY								
÷÷÷	×					09/10/01 18/10/01 24/10/01		DRY DRY DRY 4.57	56.21							
					General Backfill	06/11/01		2.97 1.76	57.81 59.02							
			1							· ·						
	80					sh Geological	Eurvey									
	60		45.78	15.00		sh Geological	Survey									
			45.78	15.00	Brit	sh Geological	Survey	-				British G	ieological	Survey		2)
Remark	B itted.		45.78	15.00	Brit	sh Şeological	Burvey					British G	ieological	Survey		-

Ritteh Garlaniral Suiver	CONTRACT (nucleudge Sections	Neilan		CELLIN .	REPO	RT No.	·
oliusii veologikai ouvej	Client	Start - 123 Jan - 3123 - 1	or no i	,	Stationary 1. See	Groun	d Level 61.8 m	0
Ī	Site Address	ifrtan - Million (r		· · · · · · · · · · · · · · · · · · ·		Guorg Sot no	Commenced 10. Completed 11	6.71
+	Type and Dia of E	Borng				TL:	SNE 3	
		hell and Auger 20	11 (rm	carte.		35	160.5959	
	1. None	Hole Douth Casing Douth	Vator	evers ne	101380 20	nng Bo		<u> </u>
	3, Remarks	Water Leve:						
			Scale 20	mm -	Sam	Jec		1 SP
British Geological Survey	De	escr: plasm sh Geological Survey	Depth	Lege	Ref. N	o. Type	Depth m	N
×	Topsoil. Stiff light gr boulder clay w	rey and yellow-brow with chalk.(CL to C	n 0.45		5548	J	0.75	
					5549	U	1.05-1.5	
					5550	J	2.0	
	Stiff brown an boulder clay a	nd grey mottled with chalk.	2.6		5551	U	2,6-3,05	
British Geological Survey			5.1			British Ge	ological Suivey	
				Thur				
					t a 's recordence			
	э.							
British Geological Survey			-			Bruish Gr		
				剧				

Borehole record form

Water Resources Act 1991 (as amended by the Water Act 2003)

A Site details			
Location MADINGLEY MULCH, MADINGLEY RO	AD, COTON , CAMBS	6 CB23 7PH	
NGR (ten digits) LTL 3937 5937			Please attach site plan
Ground level (if known)	90	na tana d	metres Above Ordnance Datum
Date drilling commenced 24/07/2016	(DD/MM/YYYY)	Completed 12/08/2016	(DD/MM/YYYY)
B Construction details			
Borehole datum (if not ground level) (metres (m ken, for example, flang). Please tick if this is abo ge, edge of chamber)	ve 🔲 or below 🗋 ground level. ritish Geological Survey
Borehole drilled diameter	200	mm from L ⁰	to <u>25.0</u> m/depth

		100	mm from [to 14.0] m/depth
		L	mm from) to	_ m/depth
		L	mm from	54) to	j m/depth
Casing material	mple if plain steel, plastic	diameter		letails not ter] m/depth
Casing material	PVC PLAIN	diameter 125		letans, not ter	to 171.0	」m/depth
Casing material	PVC SLOTTED	diameter 125	mm from	1.0	to 74.5	m/depth
Casing material	L	I diameter L	mm from L		」to∟	m/depth
Grouting details	GL - 20.0 METRES - BEN	TONITE				
Water struck at	1. 140.9	i m (depth below da	tum – mbd)	2. 📖	tish Geological Survey	」 m (mbd)
	3.	m (mbd)		4. ட	_	_ m (mbd)

C Test pumping summary (Please supply full details on form WR39)

Test pumping datum	L	m. Please tick if this is above 🗌 or below 🗌 ground level.
(if different from borehole datur	n)	
Pump suction depth	L	mbd
Water level (start of test)	37.0	mbd
Water level (end of test)	37.0	mbd
Type of test (for example, bailer TO BE CARRIED OUT BY OTH	, step, constant rate) IERS, WATER LEVEL AT 37M bgl	
Pumping rate	0	m³/hour 🔲 or litres/second 🗔. Please tick as appropriate.
	for Entish Geological Survey	days, L hours, a Geological Survey mins
Recovery to L (from end of pumping)	mbd in []	days, L hours, L mins
Date(s) of measurements	Pump started 12/08/2016	(DD/MM/YYYY)
	Pump stopped	(DD/MM/YYYY)
Please supply chemical analysis	if available. If you have included th	is please tick this box \square

WR38 Version 2, February 2011

page 1 of 3

WR38: Borehole record form

GREY BO GREY CL STIFF GR GREY/ GI SANDSTO	ULDER CLAY AYEY CHALK EY GAULT CLAY REEN DENSE SAND DNE British Geological Survey	27 5. 39 3. 0. British Ge	7.0 0 9.0 4 1 ological Survey	27.0 32.0 71.0 74.4 74.5
GREY CL STIFF GR GREY/ GI SANDSTO British Geological Survey	AYEY CHALK EY GAULT CLAY REEN DENSE SAND DNE British Geological Survey	5. 36 3. O. British Ger	O 9.0 4 1 ological Survey	32.0 71.0 74.4 74.5
STIFF GR GREY/ GI SANDSTO	EY GAULT CLAY REEN DENSE SAND DNE British Geological Survey	39 3. O. British Ger	9.0 4 1 ological Survey	71.0 74.4 74.5
GREY/ GI SANDSTO	REEN DENSE SAND DNE British Geological Survey	3. O. British Ge	4 1 ological Survey	74.4 74.5
British Geological Survey	DNE British Geological Survey	O. British Ge	1 ological Survey	74.5
British Geological Survey		British Ge		
British Geological Survey	British Geological Survey	British Ge		
(continue	on separate page if necessary)	rercepted)	<u>(199)</u>	

E Completing this form

How long did it take you to fill in this form?

For Official use only

Date received (DD/MM/YYYY)	File British Geological Surve	Consent number	BGS reference number British Geological Survey
Accession number	Wellmaster number	SOBI number	NGR
LIC NO	Purpose	2 300 17 3.6 20 20 20 20 20 20 20 20 20 20 20 20 20	EA reference number
Copy number	Entered by		[[]
L	L		

WR38 Version 2, February 2011

page 2 of 3

/MHC

TL/25NE/1

th September, 1947.

15C.

SUPPLY FROM OUSE VALL

Record of Borings for Reservoir Site near Coton

Boring No. 1. N.G.R. 3951-5886

Taken on 170 ft. contour line due south of Medingley Hall, 500 yds. west of line of dam proposed by Messrs. Finnie, Deacon & Gouriey, slightly to the west of Whitwell Farm.

Descriptions of Strate	<u>of Strata</u> <u>above U.D</u> .	<u>p Thickn</u> Stra	<u>ess of</u> ta.
Surface	170.00		
Top soil Top of rottled clay	169.50		6"
Nottled clay	197. 30	41	6"
Survey Top of brown clay anthe Bedenica Survey	165.00 Roberts	enionical Survey	<i>.</i>
Top of blue clay	158.50	61	0"
of chalk		351	6"
Top of grey clay Crey clay	123.00	21	61
Top of grey chalk Grey chalk	120.50	21	6"
Top of hard block chalk The l-vel of the gault	118.00 98.50		<i>i</i> -
The thickness of the chalk		19	6"
Leuceneren 4. 1100 fante		- <u>-</u>	 ,
Total depth of boring.		751	6"

British Geological Surve

British Geological Survey

Aritish Ge

British Geological Sune

British Geological Survey

British Geological Survey

24

			epar	tme	mt	T-145,1 4199. 5	365 865			
	CUNTRACI	Cambridge We	stern By-Pass	85	N TRO	i	7562/LT/JH			
British Geold	iläfStrife) -	Eastern Road	Construction	Gitt	-516.60	setgi 55.	.3 0.D.(16.8m)		
	Sim Addings	Acconmodatio	n Bridge - Cro	ssing 12		l Ga Bri	they Co.	masacha Spiet-c	10.11.	69. 69.
Ô	Type and of Corol	. Shell and Au	ger 8 ins. dia	1.						
\odot	Water Crike	**************************************	. Nera	Land of the second s		rico				، ۱۹۹۵ میل ۲۹۹۹ میلی کرد.
÷	1. None		. I 1	1	1		•			
	3		n Na marantar na sa		1		ĵ	[
	Brinstke									
	т Голобальство али на т. т 	 	· · · · · · · · · · · · · · · · · · ·	Same 1 motor	5 ft.]		Ś	enples	8. 5 P 1	
		n Bhuannach Mar a	* ************************************	and the second		ઈંસ્ટ શેર	ivpe		and the second sec	
	Topsoil. Stiff gi	rey-brown sand	y clay with	016"		120ļ	B J ish G		1'0"	
	occasion Stiff g	nal stones and rev clay with	root fibres.	216"		1202	J		3'0"	:
	Upper su	urface re-depos	sited with	U iery		1203	U	3'6	"- 5'0"	
	occusion	nai somes.				1204	J		610"	
2		· · · ·				1205	11	816	"_1010"	
			•			1006			-10 0	1 1
						1200	ป่		11.0.	
		a							,	
British Gent				nev E		1207	U British G	1 3• 6' enlogical Su	"-15'0"	
	· ·					1208	J	oorogrour ou	16'0"	
				1 1			de un presente			
				1		1209	U	18'6'	"-20'0"	
	STORE TO			21'0"		1010	T			
	SUII DI	ue-grey fissur	ed clay.	(6 40m)-	-	1210	J		21'0"	
					1	1211	U	2316	-2510"	
r a da a			*			1010	T		6100	
0	-					1212	J	×. 1	20.0.	
Dritiah Osa	nizal Quant		Dritish Castaniast Co.			1015	Dillioh	«فاحظمها»»		
DIMST OFUS	zyical ourvey		onush dediogical Su	nel –		1213	CURN N	2816	-30'0"	
				E		1214	J	3	s1'0"	
	× .	с х				1215	U	33'6"	-35'0"	· · · · ·
	Codé: 11-	ىسىرىيا ئىرىيىسى بىرى . مەمەر كىلەر بار يەر بەر بەر ئ	La ci in trata da la ci	territoria and Com	-tll	1 . 1	Canal		166	in Saraha and

	Cen	ntenaturenten Menaturenten	etni soli	mechar	nic <u>s</u> dej	partme	nt	BORE	HOLE	No.
	CONTRACT	Cambridge We	estern By-Pase		15 4	REP	ORT No	Continuation 5	LT/JI	I
Daitah Cod	aniani Oumau		Driliah Caalaaisal	ourou			Drillah Ca	slaniani Dumau		••••
DHUSH ORU	UULALOUIYEY			Scale 1 in	ch=5 ft.	• 11	Samp	os & S.P.	Τ.	
		Description	a	Depth	Lapa.	tij Rot.No.	Type	Dap	th	biny
	Stiff bl	ue-grey fissu	ured clay.	1		1216	J	36	0"	-
0	(continu	ied)		ann - Maria Anna		1217	v	3816"-	40+0"	na Managanagana gana na Lungado na min
	· ·									-
					81+	- 1218	J	41	"0"	-
					H					
				1		1219	U	4316"-	1510"	
					EH #	1990	T	46	0"	
British Ger				Suney	EL	1220	British Ge	logical Survey		
~		`			HI	¥.				1
				5010"	日	1221	U	4816"-	5010"	1
				(15-24-	3-1-	-				
						-				
	·	an ' 445 ' 188						-		-
a And N N		2 ° 2	· · ·		E.			·	×.	1 :
·····				1 [*]	ET ·				· · ·	
. A		8. * X.								ter direct co
÷.	-				E	Anna I ann Anna				
		<u>.</u>				and a second			ð)	
• British Ge				Suney	Ħ	and the second se	British Ge	logical Survey		
					ΞI					
	600 G				ET I	Name of Contract o				
		. *			H	-		5		
					日			. 8		
				· · ·	E					and a start and a
				40 1		-		×.		
0		*			H					
		1. F					-			· .
British Geo	logical Survey	· .	British Geological	Surley			British Ge	Ibgical Survey		
· ·'					-					
1.11.191	. ×			· · .	H				·	
					E					
					EI.					
	-				HI	· ·				
					an fairs for an fair an anna an a					

CONTRACT Cambridge Western B	y-Pass.		REPOR	RT No. 7	7562/LT/J	11
Burgelow Eastern Road Constr	uction Unit.		Group	trevet 6	3.7 0.D	(19.8m)
Site Addrass	A45 Cut		Boring	Commence	d 22.1	0.69
Type and Dis. Botary Flight Auge	r. 6 ins. diamete		Boring	Completent	22.1	0.69
of Lotine	Nora - wele Pacorde	d During P				
1. None Have Depitr		T		1.		
2. Calin, Depth 3. Water Lawn						
Remarks			(78) 			
	Contra 1 Jaco	5ft.]	l	Samular	5. CPT	
Cleserption	Depth	Cegenit	Ref. No. T	vpe	Depth	Ling Mart
Topsoil.	216		560	J	1'0"	
h Geological Survey, and the B	itish Geological Survey (0.46m)		561	B ritish Geologi	2'0"	
clay.	a silty	1	560	n	Lton.	
		-	502		4 0	
		×	563	J	610"	
			564	D	810"	
	10.0.	1	565	J	10'0"	
	(3·05m)					1 24
	-					
h.Ge Kojical Suner (PA)	ritish Geological Survey			British Geologi		
			22			
		H				
h Geblogical Survey B	ritish Geological Survey			British Geologi		
			1.1			
	<u>I</u> T	11				1.

	0		Nor	west t	Holst S	Soil	Engi	inee	ering	Lt LSNV	d.	Bore	hole No.
British Geo	Locati Client, Metho Diame	d of Bo	chlumberg ro Happo pring. Cabl Borehole	er Cambri ld e Percuss 150mm	ion British Geological S	lurvey	42 59	.2.4 08	Sheet Chainag Ground Date	1of2 Level 28/2/9	21.16)10(3)	m. A	
			Descriptio	n of Strata		Legend	Depth Below G.L.(m)	O.D. Level (m)	Casing Depth at Sampling	Sam ar Coi	pling id ing	"N"/ R.Q.D.%	Daily Progress
	Firm a lit	brown tle f	ish grey Tine roun	silty CL ded grave	AY with 1.		0.30	20.86		0.00	0-0.10 0-0.40		1111
	Firm sligh fine round	to st tly s to co	andy CLA arse sub	brown si Y with a -angular	lty little to sub-		1.20 1.40	19.96 19.76		1.00 (60) 1.20 1.40)-1.20)-1.30)-1.50		
	Soft sandy subro	to fi CLAN under	rm orang With mu 1 to roun	e brown v ch fine t ded grave	ery o medium 1.		2.10	19.06		s	-1.92	"8"	
British Ge	Firm sandy grave	CLAY CLAY	grey mot with a chalk.	tled ligh little su	t grey bangular Bilish Geologic S					2.50 (79 2.80	0-2.80 5) 0-2.90	2 The	
	CLAY	blue	grey fi	ssured si	lty	× ×				3.50	0-3.95	"17"	
										4.50 (80 4.90	0-4.90 0) 0-5.00		يتيا يتايين
British Ge										6.0 0	0 -6 . 4 5 ological Sun	"17" ay	lanni
										7.50 (89 7.80	0-7.80 5) 0-7.90		
										9.00	0-9.45	"26"	
British Ge	logical Survey	e of Sa	mple	Remarks (O	bservations of G	round Wa	ater etc.)	() (J100 B1	ows:0	ological Surv	ey	
	ls S.P.	r. 🖬	Undisturbed										
	Ic C.P.	T. X	Vane										
	0 Jar	\wedge	Water										
l	🖤 Bulk		Plezometer	Water levels a	re subject to seaso	onal or tidal	variations	and shou	ld not be t	aken as co	nstant	at a state to de Politika	

Contract No. W.3307/F150	HOLST 8 SITE INVEST PARKSI LEEDS	CO. LT IGATION DEPT DE LANE LSII5SX	D. Borehole No	4a.		(432) Suvey
Location Cambridge.		oonogiuu ourroj	Ground Leve	I	under overegiours	10101
Client Cambridge C:	ty Engineer.		Date			0
	BOREH	OLE LOG				4
STRATA	Legend Depth bel	ow Thickness Type of evel of Strata Sample	kN/sq.m deg.	m.c k	y y g/cum. N	7
Top Soil.	0.23m	0.23m				-
4	1					1
Firm brown sandy stony		1.45m				
clay.		1.40m				
	1 68					1.
Sand & Gravel with clay.	1.91	m 0.23m				
						1
Nitish Gaelerical Survey	British	Gononical Quinev			Rritich Guological /	Rumow
clay. silty, fissured.	Diagn.	1.30m			union openginari	ning)
						1
	3.20m	•				
						1
						1
	British	Geological Survey			British Geological (Survey
and the second se						
						1
						1
						1
й. Г						1
						1
	Drittak	Connairal Quarto			Dritich Cholonies I	21 mar
nilian oculogical aurrey	DIIII31	veouvgical odlikty			unuan ordiogical a	10 AGÀ
Water Struck at 1.22m		Maximum O	bserved Water L	evel 1.2	22m	-
Undisturbed Sample []		S	c - C	ohesion ngle of Inter	nal Friction	1
Distusted Sample O						-

TRIAL ΡΙΤ Ν Depth -m Strata Descriptionsh Geological Survey 4 TOPSOIL ñ 8 G.L. - 0.25 Dark brown silty clay TOPSCIL with live rootlets and occasional gravel. SUPERFICIAL DEPOSITS 0.25 - 1.40 Firm to stiff light brown and light grey mottled CLAY, fissured in places. Occasional gravel and nodules. A few pockets of orange brown gravelly silty sand. Live rootlets. GAULT CLAY 1.40 - 3.50 Stiff light grey mottled olive, and dark grey British Geological Survey with depth, fissured CLAY. Occasional pockets of small selenite crystals. Traces of decayed roots below 2.50m depth. Remarks ? 1. Trial pit dug by JCB 3CX hydraulic excavator on 15.08.1988. 2. Trial pit dimensions 0.75 x 2.50 x 3.50m deep. şı 3. Sides stable. No water encountered. 4. 5. Disturbed samples taken at 0.50, 1.00, 1.50, 2.00, 2.50, 3.00m British Geological Survey depths. 6. Vane Tests. Readings Depth m Average Shear Strength kN/m² kN/m² 0.5 110, 110, 170, 88, 162, 155 130 135, 147, 167, 147 1.00 150 1.50 160, 155, 147, 152, 152 155 2.00 165, 157, 152, 152 155 British Geological Survey 640 Report No. Date . TRIAL PIT LOG 14 August 1988 S.1086 - TYRONE -

Ground le	vel: 30.811	and Aug	0.0. N	ewlyn (9.40 m	Dia. of boring : 10in. and Bin.	15/1.
Daily	Samples		c	hange of t	Strata	cours cores	
Progress	Depth	Туре	Legend	Depth	O D. Level	Description of Strata	
		30		3.6.	27.3	TOPSCIL	
	*'0' - 5'0'	C(60)	0.0.0	(1104m)		Medium dense to very dense brown coarse medium to fine flint GRAVEL	SAND and
	9'0' - 10'0'	8C C(17)	0.0.0	(3.05m) 10'0' 10'6'	20.8	Stiff brown CLAY with fine flint gravel	
25.2.63	12'0-	D	- X-, - /	(3.96m)	17.5	Firm fissured grey CLAY with occasional	fine
1		13"	X			Unit single taken at	eine lat
British Geological Survey	20'0' - 21'6'	U(#) D	1	Geological	l Survey	Servin & submitted of Contracting	·
	25'0-	D	Ă,			mineformer Rolls 28.2.64.	
	30'0' - 31'6'	5 ⁰					
	31'6-	D	X			к. 1	
	35.0.	D					
	40'0" - 41'6"	D(1)	1				
26.2.63	45'0"	D	2			Stiff to very stiff fissured area CLAY be	Contro a
British Geological Survey	50'07 - 51'C	184		Geological	l kurvey	hard below about 30ft.; occasional shell below about 35ft. British Geological Suney	fragments
	51'6	0					
	55'0"	D					
	60'0' - 61'6-	13 ²¹ U(4)					
	65.0-	C					
		161					
27 7 63	71.6	U (4) D				·	
	75'0-	D	X			Public Destantial Deser	
28.2.63	80'0" - 81'6'	18		81'(-	- 50.7	punzu pennikar anvek	
	61 0			(24.841	2		
	8						
Untish Geological Survey			. Britis	a Geòlogical	i urvey	British Geological Survey	
						-	
						- × . w.	
a an	Amous.	, all	- 14	steri	i=1-4	Waltable (1825)	e al forda de la
Key to type	of sample :		Rem	arks	(Observat	ions on ground-water. etc.)	
U (4)	in. dia. undisturbed in. dia. disturbed sample.	sample.	Wate No g	r was an	dded to an	ssist boring through sand and gravel deposi sncountered during boring.	ι.
S ()-	bulk disturbed samp water sample. Istandard penetration	test.	On a si	ight see	epage of a) tubes and backfilling to 10ft, depth ther water into the hole.	C #45
No. in brac No. of blov	est. kets gives vs/12 in. penetration		Britis				
						So	ils No:

. co	ONTRACT C	ambridge Northern	By-Pass.			REPC	RT No. 8639/5	SEQ		
	lient E	Astern Rond Const	ruction U	njt.	ľ	Ground Level 60.40 m. O. D				
Sit	re Address G	irten - Milton, G	8	oring	Commenced 10. Completed 10.	6.71 6.71				
Ty	pe and Dia. of B Si	oring hell and Auger 2	00 mm, di	ame ter.	-	T - 7	L365E/1			
Wat	ter Strikes		Water	evels Reco	rded Durir	ng Bo	ring m	<u>ه</u>		
1.	None	Hole Depth Casing Depth				Γ				
Ren	narks	Water Level								
	 `Dec	cription	Scale 20	mm.⇔	Sample	18		S.P.T.		
ogical Survey		British Geological Survey	Depth	Legend	Ref. No.	Type	ogical Su Repth	N		
Te Me	ery stiff b ottled bould	rown and grey der clay with	0.45		5539	J	0.60			
C	CI (CI	to CH).		IN	5540	U	0.75-1.20			
			1.50		5541	J	1.50			
				utuutuutu						
ogical Survey		British Geological Survey		trutuutuutuu	Briti	in Gei	ogical Survey			
ogical Survey	· .			untrationter	Brit	sh Geol	ogical Survey			

Cementation soil mechanics department BOREHOLE No. 621 D.1010 OWS REPORT No. 8639/SEQ CONTRACT Cambridge Northern Hy-Pass. Ground Level Client Eastern Road Construction Unit. m. O.D 55.2 Boring Commenced Boring Completed 21.5.71 Site Address Girton - Milton, Cambridgeshire. 21.5.71 TL365E 2 Type and Dia. of Boring Shell and Auger 200 mm. diameter. 5731. 6002 Water Levels Recorded During Boring m Water Strikes 6.40 7.50 Hole Depth 1. (medium) Casing Depth 2. Water Level None 3. Remarks ---S.P.T. Samples Scale 20mm = Description Depth N Ref. No. Type Depth m Topsoil. 0.15 7729 J 0.30 Ϋ́Ċ Stiff brown sandy boulder clay 0.50 with specks of chalk (CL to CI) 7730 J 0.60 Very stiff brown and grey mottled boulder clay with chalk (CI to CH) 7731 U 1.50-1.95 7732 J 2.25 7733 J 2.70 υ 7734 2.80-3.25 7735 J 3.50 4.10 7736 J 4.20 Very stiff dark grey silty boulder clay with chalk, with occasional small pockets of sand and gravel (CI to CH) 7737 υ 4.50-4.95 7738 J 5.25 7739 35 J 6.90 5 7740 J 7.30 7741 υ 7.50-7.95 7742 J 8.25 ź 7743 J 8.70 SHEET 8.70 W 774/ J-Jar Sample Code: U-Undisturbed Sample D-Large Disturbed Sample W-Water Sample

Rritich Ganlanical Survey	CONTRACT	Cambridge North	ern By-	Pass.			Rr eh (EPO	RT No. 8639/S	E
1 .	Client	Pastern Rond Con	G	Bround	t Level 59.7 m					
	Site Address	Girten - Milton	, Cambr	idgesh	ire.		8 8	oring	Commenced 19 Completed 20	
	Type and Dia. of	Boring Shell and Auger	200 m	m, dia	me t.e	·r.		TL	35NE 29	-
F	Water Strikes	1		Water L	evels F	Record	led Durin	g Bor	ing m	
	1. None. 2.	Hole Depth Casing Depth Water Level								
	S. Remarks		1	1				J		r
British Geological Survey	n	British Geological Survey		Scale 20r	nm=,		Sample	S	al Survey Depth	
				Depth		gend	Ref. No.	Туре	m	_
	Topsoil. Stiff brown	boulder clay wi	ith	0.15	目行	λČ	2179	J	0.40	
	specks of c	halk (CI to CH)		0.50	Ħ	7.	2180	J	0.60	
	Very stiff mottled bou chalk (CI)	brown and grey lder clay with				\mathcal{I}	2181	σ	1.00-1.45	
	011021						2182	J	1.75	
						フ	2183	σ	2.50-2.95	
British Geological Survey)	2184) Jojngio	3.25	
	Very stiff	to hard dark gro	ey	3.80			2185 2186	J	3.90	
	silty bould (CI to CH)	er clay with ch	alk	÷		Ĵ	2187	J	4.95	
						3				
						\mathcal{D}	2188	U	5.50-5.95	
						-	2189	J	6.25	
British Geological Survey						\bigcirc	. British (Seologic	al Survey	
						Ì	2190	σ	7.00-7.45	
1					EI.	\cap	2191	J	7.75	

den.

	IAN F. Geotechnic	ARME	R ASSOCIA	TES gations		Site A428 Caxton Common to	o Hardwick Improvement	Trialpin Numbe TP8/														
Excavation Rubber du	n Method ck	Dimension 2.6 x 0.7	ensions Ground Level (mOD) Client .6 x 0.7 British Geological Survey Highways Agency British Geological Survey				imensions Ground Level (mOD) Client 2.6 × 0.7 British Gelogical Survey Highways Agency British Gelogical Survey					Dimensions Ground Level (mOD) Client 2.6 x 0.7 British Ge lug1.74 unay Highways Agency British Geological Survey					Internation Ground Level (mOD) Client 2.6 x 0.7 Britch Generation 61.74 uney Highways Agency Britch Generation					Job Numbr 220
		Location 536990 f	E 259897 N	Dates 06/09 06/09	9/01 - 9/01	Engineer Parsons Brinckerhoff	Sheet															
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Leve (mOt	Depth (m) (Thickness)		Description	Legend														
					(0.30)	TOPSOIL	·															
0.50	J1			61.44	0.30 . (0.30)	Firm to stiff fissured, brow subrounded fine to coars	wn CLAY with some subangular to e gravel of chalk and fiint.															
				61.14	- 0.60 	Stiff fissured grey blue m subangular to subrounde	ottled brown CLAY with fine to coa d gravel of chalk and flint. Occasio irgnstone at 2 - 2 5m BGI	rse,														
1.00	B1					bouider size, cobbie size	1013(0)e al 2 - 2.511 BGL.	·														
1.50	J2				L.I.I.																	
	cal Survey			n Geological	- (2.40)																	
2.00	B2				L. I.																	
2.50	13				- 1 - 1 - 1																	
2.50	55																					
3.00	ВЗ			58.74	3.00		~															
		-				Complete at 3.00m																
					<u>.</u>																	
8																						
British Geolog	ical Survey			n Geological	S <u>am</u> ey																	
					- Lu Lu																	
					1.1.1	£																
Plan .	L	L			E	Remarks																
					[Pit dry and stable																
Dritich Ossiss	izal Qumou		Delite	Contaniant	Qurana		Dritich Coolesiaal Ousers															
prittari OCQIUY	ical oul/by	. •	• prius	rveqivyitdi	oditel .																	
					· · [
				20		Scale (approx)	Logged By F	igure No.														
		•		•		1:40	JG	2203.TP819														

	IAN F. Geotechnic	ARM cal and	ER ASSOC	CIAT westiga	ES tions		Site A428 Caxton Common to	Hardwick Improvement	Trialpi Numbe TP8/								
Excavation JCB 3CX	Method jical Survey	Dimen: 2.6	Insions Ground Level (mOD) Client .6 x 0.7 British Geological Survey Highways Agency British Geological Survey					mensions Ground Level (mOD) Client 2.6 x 0.7 British Golgena Suney Highways Agency British Geological Suney				mensions Ground Level (mOD) Client 2.6 × 0.7 British Guidan Survey Highways Agency British Geological Survey					Job Numbe 2203
		Locatio 536	926 E 260000 N		Dates 11/09/ 11/09/	01 - 01	Engineer Parsons Brinckerhoff		Sheet								
Depth (m)	Sample / Tests	Water Depth (m)	Field Record	is	Level (mOD)	Depth (m) (Thickness)		Description	Legend								
						- - (0.40)	TOPSOIL										
0.50	J1				60.39 60.19	0.40 (0.20) 0.60	Stiff fissured light brown (subangular to subrounded	CLAY with some fine to coarse d gravel of flint and chalk.									
0.70	240.0kPa B1		240/Av. 240.0			1.1.1.1.	Stiff fissured grey mottled subangular to rounded gr	brown CLAY with much fine to avel of flint and chalk.	coarse								
1.50 British Geolo	J2 ical Survey				eological												
2.00	B2					- (2.70) 											
2 50	.13																
2.50																	
3.00	B3				57.79	3.00			<u> </u>								
			~				Complete at 3.00m										
British Geolo	jical Survey			Billio	eological												
	· · · ·																
Plan .	• •	•		•	•	· *'	Remarks Pit dry and stable										
· ·			• •														
British Geolog	jical Survey			British C	eological	Survey .											
	. :		·														
-																	
•••		•		•	•	• •	Scale (approx)	Logged By	Figure No.								
					•		1:40	JG	2203.TP8/13								

E. Preliminary UXO Risk Assessment Report

PRELIMINARY UNEXPLODED ORDNANCE (UXO) THREAT ASSESSMENT

Meeting the requirements of *CIRIA* C681 'Unexploded Ordnance (UXO) – A guide for the Construction Industry' Risk Management Framework

PROJECT NUMBER	8028	ORIGINATOR	D. Barrett						
VERSION NUMBER	2.0	REVIEWED BY	L. Gregory (18 th March 2020)						
CLIENT	Mott MacDonald	RELEASED BY	M. Cornforth (18 th March 2020)						
STUDY SITE	A428 Cambourne to Cambridge								
RECOMMENDATION	The "High" threat zone of the Study Site requires a Detailed UXO Threat and Risk Assessment								
	No further action is required in the "Low" threat zone to address the UXO risk								

special risks consultancy

6 Alpha Associates Limited, Unit 2A Woolpit Business Park, Bury St Edmunds, IP30 9UP, United Kingdom T: +44 (0)2033 713 900 | W: www.6alpha.com

STUDY SITE

The Study Site is described as "A428 Cambourne to Cambridge", and it is centred on National Grid Reference 538867, 259282.

THREAT POTENTIAL AND RECOMMENDATIONS

The potential for a UXO hazard to occur, and more specifically, the potential for unexploded WWI and WWII ordnance to exist at the Study Site is assessed as being LIKELY in certain areas (*Figure 2*).

In accordance with *CIRIA* C681 Chapter 5 on managing UXO risks, *6 Alpha* recommends that the next stage in the risk management framework is:

DETAILED UXO THREAT & RISK ASSESSMENT

We would be pleased to provide this service, please contact 6 Alpha Associates for further details.

Nonetheless, the potential for a UXO hazard to occur, and more specifically, the potential for unexploded WWI and WWII ordnance to is assessed as being UNLIKELY in the majority of the Study Site (*Figure 2*).

In accordance with *CIRIA* C681 Chapter 5 on managing UXO risks, *6 Alpha* concludes that **NO FURTHER ACTION** is required to address the UXO risk in this section of the Study Site. Should you have any queries, please contact *6 Alpha*.

REPORT SUMMARY

During WWII, the Study Site was situated within *Chesterton Rural District* and *Cambridge Municipal Borough*, which recorded one and three High Explosive (HE) bomb strikes per 100 hectares respectively; both very low levels of bombing.

Luftwaffe aerial reconnaissance photography associated with the Study Site did not identify any primary bombing targets on-site or within 1,000m of the Study Site boundary. However, Royal Air Force (RAF) Bourn was located on-site, which would have been considered a primary bombing target had the Luftwaffe known of its existence. Moreover, analysis of official RAF plans identified several "Bomb Stores" (665m south-east), which corroborates further research which identified RAF Bourn as a designated Bomber Command Base.

Air Raid Precaution (ARP) records did not identify any HE bomb strikes on-site. However, six HE bomb strikes were identified as landing on *RAF Bourn*, some of which could have been on-site. In addition, eleven HE bomb strikes were identified landing near *St Johns College* 890m east-north-east of the Study Site boundary.

Official bomb damage mapping was not available. In addition, an analysis of post-war mapping did not identify any areas of potential bomb damage on-site or within 1,000m, however further research identified bomb damage to *Bridge Street* 900m east-north-east.

Given that *RAF Bourn* was located in the western sector of the Study Site and bomb strikes may have occurred on-site; it would suggest that further action is warranted to address the potential for UXO encounter in the "High" threat zone. However, there is no evidence to suggest that further investigation into UXO is warranted for the "Low" threat zone of the Study Site.

USING THIS REPORT

This Preliminary Assessment is designed to inform environmental and construction professionals of the potential threat of military related explosives and/or ordnance on, or in, the vicinity of the Study Site.

This assessment is designed to be employed as a site-screening tool to meet with the requirement of Phase One of the *CIRIA UXO Risk Management Framework*; there are two broad prospective outcomes; either the threat level requires a detailed threat & risk assessment; or no further action is required. In the former instance we can provide a report within 10 working days (or more quickly upon application).

Two figures accompany the report, the *Second World War* (WWII) High Explosive (HE) Bomb Density and the final Probability of UXO Encounter. The purpose of this approach is to demonstrate that whilst bomb density statistics give an indication for WWII bombing, they should not be relied upon exclusively to generate a holistic assessment.

For further information, please contact *6 Alpha*: Website: <u>http://www.6alpha.com</u> Telephone: +44 (0)2033 713 900 Email: enquiry@6alpha.com

UNEXPLODED ORDNANCE THREAT ASSESSMENT

Data Findings						
Threat Source (within 1,000m)		Detail				
		Identified	Comments			
×	Airfields/Military Facilities	~	RAF Bourn (on-site) and Cambridge Camp (180m south).			
	Ordnance Manufacture/Storage	×	None recorded within 1,000m.			
	WWII Decoy Bombing Sites	¥	Starfish Decoy Site (620m south).			
	WWII Defensive Features	¥	A pillbox (475m south-west).			
	WWII <i>Luftwaffe</i> Designated Bombing Targets	×	<i>Luftwaffe</i> aerial photography did not identify any primary bombing targets on-site or within 1,000m of the Study Site boundary.			
	WWII Bomb Strikes Within Study Site Boundary	¥	Further research identified bomb strikes at <i>RAF Bourn,</i> potentially on- site.			
	WWII Bomb Strikes Near Study Site Boundary	~	ARP records identified eleven HE bomb strikes (890m east-north-east).			
	WWII Bomb Damage	~	Further research identified bomb damage (900m east-north-east).			
Ş	Abandoned Bomb Register	×	The official abandoned bomb list did not identify any abandoned bombs on-site or within 1,000m of the Study Site boundary.			
	Potential Threat Sources	¥	The most probable UXO threat is posed by WWII <i>German</i> HE bombs and <i>British</i> HE bombs, AXO/LSA/SAA.			
	WWII Bombing Density Per 100 Hectares	¥	<i>Chesterton Rural District</i> and <i>Cambridge Municipal Borough</i> , which recorded one and three HE bomb strikes per 100 hectares.			
IMPORTANT NOTES						

- The term 'Preliminary UXO Threat Assessment' has been used to describe this report, to fall in line with the CIRIA C681 guidelines. Whilst the term 'Risk' can be justifiably used at this stage, the reader should note that the 'Consequence' function of 'Risk' is not considered. Should it be required, this would be addressed in the 'Detailed UXO Threat & Risk Assessment' (Stages 2 and 3).
- 2. This report is accurate and up to date at the time of writing.
- 3. The assessment levels have been generated from historical data and third-party sources. Where possible *6 Alpha* have sought to verify the accuracy of such data, but cannot be held accountable for inherent errors that may be in third party data sets (e.g. *National Archives* or library sources).
- 4. 6 Alpha have exercised all reasonable care, skill and due diligence in producing this service.
- 5. Whilst every effort has been used to identify all potential UXO/explosive threats, there were a number of private facilities, which may not have released privately recorded information concerning UXO/explosive threats into the public domain. It is therefore possible that some of the aforementioned sites may not be included within the database.

A428 CAMBOURNE TO CAMBRIDGE

WWII High Explosive Bomb Density

A428 CAMBOURNE TO CAMBRIDGE

Probability of UXO Encounter

F. Geotechnical Risk Register

The Geotechnical Risk Register for the scheme is detailed in Table F.5. The risks associated with other aspects of the scheme, such as procedures and contractual and strategic issues are not dealt with here and the scheme risk register should be consulted for information on these elements.

The methodology is based on advice given in HD22/08. The Geotechnical Risk Register should be considered as a live document and updated throughout the course of the scheme. It is incumbent on all parties involved in the scheme to advise the other members when the risks change.

Various threats are identified and the potential consequences of these occurring are described (Table F.1). The risk assessment is qualitative and the various threat are assessed using the following

criteria:

- Cost;
- Programme;
- Health and Safety; and,
- Environment.

The risk is derived by considering the impact and likelihood for each threat and opportunity. Both the impact and likelihood have been assessed using a scale of 1 to 5, corresponding to "very low" to "very high" for impact and "negligible / improbable" to "very likely / almost certain" for likelihood. These ratings are summarised in Table F.1 and Table F.2.

Impact			Cost	Programme	Health and Safety	Environment
1	Very Low	Negligible	Negligible	Negligible effect on programme	Negligible	Negligible
2	Low	Significant	1% Budget	5% effect on programme	Minor injury	Minor environmental incident
3	Medium	Serious	10% Budget	12% effect on programme	Major injury	Environmental incident requiring management input
4	High	Threat to future work and Client relations	20% Budget	25% effect on programme	Fatality	Environmental incident leading to prosecution or protestor action
5	Very High	Threat to business survival and credibility	50% Budget	50% effect on programme	Multiple fatalities	Major environmental incident with irreversible effects and threat to public health or protected natural resource

Table F.1: Hazard impact table

Likelihood		Probability
1	Negligible / Improbable	< 1%
2	Unlikely / Remote	> 1%
3	Likely / Possible	> 10%
4	Probable	> 50%
5	Very Likely / Almost Certain	> 90%

Table F.2: Hazard likelihood index

The risk score is calculated by multiplying the impact score by the likelihood score, giving the scores shown in Table F.3. The actions required depending on the risk score are shown in Table F.4.

Table F.3: Risk level matrix

		Impact				
		1	2	3	4	5
	1	1	2	3	4	5
p	2	2	4	6	8	10
poq	3	3	6	9	12	15
keli	4	4	8	12	16	20
1	5	5	10	15	20	25

Using the matrix in Table F.3, the scores are categorised into the following four threat levels

- Negligible (0 4);
- Tolerable (5 9);
- Significant (10 12); and,
- Intolerable (15 25).

The actions required depending on the risk score are shown in Table F.4

Risk Product (I x L)	Risk Level	Description	Action by Designer	
1-4	Ν	Negligible	None	
5 – 9	A	Acceptable	Check that risks cannot be further reduced by simple design changes	
10 – 12	н	High	Amend design to reduce risk or seek alternative option. Only accept option if justifiable on other grounds	
15 – 25	S	Severe		

Table F.4: Designer Actions

Ground investigation can help to mitigate ground and groundwater risks; however, these risks cannot be eliminated. Ground investigations by their nature can only investigate and monitor a small part of the sub-surface conditions for a limited duration. Conditions on site identified during construction could reveal ground conditions that could not have been taken into account from the results of the ground investigation.

It is recommended that adequate and appropriate supervision must be provided during construction to assess the ground conditions encountered and interpret the results of the

site testing. When appropriate this supervision during construction should be undertaken by a suitably experienced and qualified Engineering Geologist / Geotechnical Engineer.

Table F.5 highlights the potential hazards that could be encountered during the site investigation and/or construction. The consequence of the hazard is outlined and a score is given for the impact and likelihood for this hazard, giving an overall risk, which is categorised as either a cost, time environment or health and safety. From this potential control measures are stated to alleviate hazard, leading to a rescoring of the impact and likelihood, resulting in a residual risk.
Table F.5: Geotechnical Risk Register

Threat	Consequence	Imp	act				Ris	k			Risk Control Measures / Actions to		
		Cost	Programme	Health and Safety	Environment	Likelihood	Cost	Programme	Health and Safety	Environment	Mitigate	Owner	Action By
1. Service / structure strike i.e. power cables, water mains and sewers	 Potential for serious injury to construction workers and disruption of service; and, Delays to construction, severe financial and political repercussion. 	2	3	4	1	3	6	9	12	6	 Thorough review of detailed service search prior to conducting works; and, Maintain vigilance and adopt best practice during ground investigation and construction 		
2. Presence of UXO	 Potential serious injury to construction workers, damage to plant and/or structures; and, The Preliminary UXO Risk Assessment identified the potential for unexploded WWI and WWII ordnance to exist at the site, as being unlikely in Zones 3 – 8, and in the east of Zone 2, and likely in Zones 1 and in the west of Zone 2, likely associated with Bourn Airfield 	3	3	5	3	4	12	12	20	12	 It is recommended that a Detailed UXO Threat & Risk Assessment is undertaken prior to intrusive works to determine any mitigation measured required in Zones 1 and 2. 		
3. Artificial Ground	 Settlement issues, including differential settlement; Varying engineering properties; Moisture sensitive; Possible obstructions (see 13); Potential low bearing capacity; Presence of soft spots, Potential aggressive ground (see 18); and Possible contamination (see 15). 	4	4	3	3	3	12	12	9	9	 Undertake a ground investigation prior to design; Best practice during construction; and, A suitably qualified Engineering Geologist / Geotechnical Engineer should supervise excavation of materials. 		
4. Oadby Member	 Variable lithologies and thickness; Stability issues in excavations; Potential to contain boulders which may pose as obstructions to construction; 	3	3	3	2	4	12	12	12	8	 Undertake a ground investigation prior to design; Best practice during construction; and, 		

Threat	Consequence	Imp	act				Ris	k			Risk Control Measures / Actions to		
		Cost	Programme	Health and Safety	Environment	Likelihood	Cost	Programme	Health and Safety	Environment	Mitigate	Owner	Action By
	 Potential perched water in granular beds which may be present (see 14); and, Secondary Aquifer (Undifferentiated). 										 A suitably qualified Engineering Geologist / Geotechnical Engineer should supervise excavation of materials. 		
5. Kimmeridge Clay	 Variable weathering profile; Potential for beds of siltstone/cementstone which may pose as obstructions for foundations; May contain variable organic content and be sensitive to changes in moisture content; Potential aggressive ground (see 18); Potential for shrink/swell behaviour; and, Unproductive Strata 	3	2	3	2	2	6	4	4	4	 Undertake a ground investigation prior to design; Best practice during construction; and, A suitably qualified Engineering Geologist / Geotechnical Engineer should supervise excavation of materials. 		
6. Woburn Sands Formation	 Vertical and lateral stability; Varying relative density/engineering properties; Possible groundwater; Stability issues in excavations; Potential pathways for contamination migration (see 15); and, Principal Aquifer 	3	3	3	2	2	6	6	6	4	 Undertake a ground investigation prior to design; Best practice during construction; and, A suitably qualified Engineering Geologist / Geotechnical Engineer should supervise excavation of materials. 		
7. Gault Formation	 May be overlain by periglacial altered deposits such as fossil solifluction sheets or head deposits, which may contain relict shear surfaces; Variable weathering profile; Settlement issues, including differential settlement; Potential for shrink/swell behaviour; Sensitive to changes in moisture content; 	4	4	4	1	3	12	12	12	3	 Undertake a ground investigation prior to design; Best practice during construction; and, A suitably qualified Engineering Geologist / Geotechnical Engineer should supervise excavation of materials. 		

Threat	Consequence	Imp	oact				Ris	k			Risk Control Measures / Actions to		
		Cost	Programme	Health and Safety	Environment	Likelihood	Cost	Programme	Health and Safety	Environment	Mitigate	Owner	Action By
	 Vertical and lateral stability, and prone to land sliding due to its engineering properties; Potential for beds of mudstone which may pose as obstructions for foundations; Potential aggressive ground (see 18); Unproductive Strata 												
8. West Melbury Marly Chalk Formation	 Variable weathering and strength profile; Stability issues in excavations where weathered; Potential groundwater; Potential pathways for contamination migration (see 15); Solubility risk; and, Principal Aquifer. 	4	4	3	3	3	12	12	9	9	 Undertake a ground investigation prior to design; Best practice during construction; and, A suitably qualified Engineering Geologist / Geotechnical Engineer should supervise excavation of materials. 		
9. Folding and faulting of bedrock	 Localised folding and faulting may alter the underlying geology; and, Potential for small unmapped faulting (associated with folding) to be present, leading to areas of increases weathering and low strength, forming potential groundwater / contaminant pathways. 	2	2	1	2	2	4	4	2	4	 Undertake a ground investigation prior to design; Best practice during construction; and, A suitably qualified Engineering Geologist / Geotechnical Engineer should supervise excavation of materials. 		
10. Sensitivity of units to change in moisture content	 Trafficability and strength of units i.e. Oadby Member and Gault Formation may reduce with change in moisture content. 	2	2	2	2	3	6	6	6	6	 Undertake a ground investigation prior to design; Best practice during construction; and, A suitably qualified Engineering Geologist / Geotechnical Engineer should supervise excavation of materials. 		

Threat	Consequence	Imp	oact				Risk				Risk Control Measures / Actions to		
		Cost	Programme	Health and Safety	Environment	Likelihood	Cost	Programme	Health and Safety	Environment	Mitigate	Owner	Action By
11. Frost susceptibility of units	 Units highly susceptible to frost e.g. Artificial Ground and Chalk have the potential to heave and affect pavements if not dealt with accordingly. 	3	3	2	1	3	9	9	6	3	 Undertake a ground investigation prior to design; Best practice during construction; and, A suitably qualified Engineering Geologist / Geotechnical Engineer should supervise excavation of materials. 		
12. Presence of solution features within soluble bedrock	 Potential for near surface cavities within bedrock (Chalk), leading to reduced rock strength, subsidence or collapse. 	3	3	2	2	3	9	9	6	6	 Undertake a ground investigation prior to design; Best practice during construction; and, Previous construction plans / drawings may help identify possible location of foundations 		
 Underground voids, concrete and relict foundations from previous site use 	 Foundations and unknown voids may be present; and, Potential shallow sub-surface obstructions impacting construction. 	3	3	3	2	2	6	6	6	4	 Undertake a ground investigation prior to design; Best practice during construction; and, Previous construction plans / drawings may help identify possible location of foundations 		
14. Groundwater	 No site-specific groundwater information is available Historical boreholes indicate that perched groundwater is likely to be encountered near surface in the Oadby Member 	3	3	2	2	3	9	9	6	6	 Undertake a detailed ground investigation prior to design, including groundwater monitoring over both short and long-term timeframes. 		
15. Ground and groundwater contamination	 Risks to operatives who come into contact with contaminated material during the works; Risk of exposure of surrounding environment to contamination; and, 	4	4	3	3	3	12	12	9	9	 An assessment on the presence of contamination within the soils and/or groundwater at site should be undertaken as part of any ground investigation works; and, 		

Threat	Consequence	Impact				Risk				Risk Control Measures / Actions to			
		Cost	Programme	Health and Safety	Environment	Likelihood	Cost	Programme	Health and Safety	Environment	Mitigate	Owner	Action By
	 Pathways could be opened up that may lead to the contamination of groundwater and soils. 										 Areas with signs of pollution should be focused on. 		
16. Ground gases / vapours	 Risks to construction worker health, design changes to structures; and, Potential build-up of ground gas below structures could be harmful to occupants. 	2	2	4	2	3	6	6	12	6	 Gas monitoring and subsequent gas protection measures (if required), should be included in ground investigation; and, Maintain vigilance and adopt best practice during construction. 		
17. Flooding of site (surface or groundwater flooding)	 Damage to equipment, delay of works, require for review of design to mitigate against future flooding events Based on the Envirocheck Report, the vast majority of the site is recorded as no to low risk of surface water flooding, with areas at medium to high-risk associated with ponds, drains and existing surface water features. There is potential for groundwater flooding to occur in some areas of the site (See Section 4.9). 	2	2	3	2	2	4	4	6	4	 It is recommended that a site-specific Flood Risk Assessment is undertaken to assess the risk of flooding at the site. Include any appropriate mitigation within the proposed design. 		
18. Potential for aggressive ground conditions on site	 Potentially high levels of sulphate within the Made Ground and natural strata at the site. This can lead to degradation of concrete strength and quality; and, Groundwater may pose a similar risk to subsurface infrastructure and foundations. 	3	3	2	2	3	9	9	6	6	 Ensure chemical testing is conducted as part of the ground investigation; and, Lime treatment (if required) to reduce the pH of the soil. 		
19. Historic mining operations proximal to scheme (e.g. Coton Chalk Pits)	 Potential for differential settlement of the backfill material to in-situ material Potential for material to be contaminated within the backfill; and, Historic Chalk mining recorded c. 150m south near Coton (Zone 4) 	3	3	2	2	2	6	6	4	4	 Undertake a ground investigation prior to design; An assessment on the presence of contamination within the soils and/or groundwater at site should be undertaken 		

Threat	Consequence	Impact				Risk				Risk Control Measures / Actions to			
		Cost	Programme	Health and Safety	Environment	Likelihood	Cost	Programme	Health and Safety	Environment	Mitigate	Owner	Action By
											as part of any ground investigation works; and,Areas with signs of pollution should be focused on.		
20. Ecological / environmental constraints	 Based on the Environmental Impact Assessment Scoping Report (see Section 3.5), surveys undertaken to date have identified the presence of badger setts within 250m of the proposed scheme, mostly occurring in the area between the M11 and Grange Road, and the grassland habitat at the Waterworks site at Madingley Mulch considered to be of most conservation significance and is considered a site of high value for invertebrates. TPO's and root protection areas are also recorded across the site. Further surveys are proposed to be undertaken and this report should be updated upon their completion. 	4	4	2	3	2	8	8	4	6	 Review of ecological surveys should be conducted to understand how design can minimise effect on environment. 		
21. Archaeological constraints	• The Environmental Impact Assessment Scoping Report records the results of an archaeological assessment and surveys across the site. This summarises several archaeological features ranging from the Lower/Middle Palaeolithic to Medieval, including Iron Age/Roman settlements. Several areas of known buried archaeology may be affected by the proposed scheme across the site (See Section 3.6 for further details).	3	3	2	4	2	6	6	4	8	 Review of archaeological surveys should be conducted to understand how design can minimise any potential effects on archaeological sites/finds which may be present within the site footprint and surrounding area. 		

G. Contaminated Land Risk Assessments and Conceptual Site Models

Source	Pathway	Receptor	Consequence	Probability	Unmitigated Risk	Mitigated Risk	Comments
<u>On-site:</u> S1 : Potentially	P1: Human uptake pathways.	R1: Construction workers.	Medium	Likely	Moderate	Low	Potential contaminants have been identified from various land uses (e.g.
contaminated artificial ground on-site from historical and current land uses e.g. Bourn Airfield and associated ancillary buildings. <u>Off-site:</u>	P2: Horizontal and vertical migration of any volatile vapours resulting from potential fuel spillages and artificial ground.	R2: Final end users (on-site users of the bus route).	Medium	Unlikely	Low	Low	surrounding infrastructure and contemporary trade directory entries) but these are considered unlikely to represent gross contamination. The most significant source of contamination is the Bourn Airfield which covers the majority of Zone 1. It's history as a former RAF airfield
S2: Artificial ground and associated							suggests there is likely to be hazardous contaminants which could be encountered during works.
surrounding infrastructure and historical land uses i.e. A428, Bourn Airfield and related works and ancillary buildings.							Construction workers are more likely to come into contact with soil and potentially groundwater. Some earthworks (cutting) are proposed in Zone 1 – if materials are to be re-used elsewhere (within Zone 1 or another
S3: Vehicles using existing infrastructure may have resulted in							Zone e.g. for fill/embankments), testing and risk assessments should be completed under a Materials Management Plan.

Table G.1: Geoenvironmental Preliminary Risk Assessment – Zone 1

fuel/oil spillages and airborne particulates.							A Construction Environmental Management Plan (CEMP) should be
S4: Industries within 250m of Zone 1 such as cleaners and engineering materials/manufacturers.							implemented prior to construction to ensure that impacts to construction workers during development are minimised. As part of the construction and operation of site it is assumed that workers adhere to a site-specific risk assessment and method statement.
							The airfield may be a potential source for vapours and/or ground gas. Proposed works are unlikely to create any new pathways for exposure. No enclosed spaces are proposed on-site and any gases/vapours are likely to vent directly into the atmosphere.
							Final end users will not come into contact with soil or groundwater on the site as the site will comprise hardstanding at ground level and site users will be inside vehicles, providing a barrier to any potential contaminants that may be present.
	 P3: Horizontal and vertical migration of contaminants in the unsaturated zone. P4: Horizontal and 	R3: Groundwater e.g. Oadby Member (Secondary Undifferentiated).	Medium	Unlikely	Low	Low	Although there is potential for significant contamination (i.e. Bourn Airfield), an increase in hardstanding will reduce the infiltration through any potentially contaminated soils on-site, therefore reducing mobility in the unsaturated zone beneath the route.
	vertical migration						The proposed works on-site (earthworks may be required – design

of contaminants in the saturated zone. P5: Migration of contaminants along engineered preferential pathways e.g. construction activity, potential drainage systems.						unconfirmed) may create new pathways within the Oadby Member (a Secondary Undifferentiated aquifer - variable permeability and transmissivity). If materials are to be re-used elsewhere (within Zone 1 or another Zone) as part of the development (e.g. for fill/embankments), testing and risk assessments should be completed under a Materials Management Plan.
						It is currently unknown if any drainage solutions will be installed along the route, which could impact infiltration into the unsaturated zone. The risk assessment should be updated when new information becomes available.
	R4: Groundwater e.g. Woburn Sands Formation (Principal) beneath the majority of the Zone i.e. Bourn Airfield (east side of Zone 3).	Medium	Unlikely	Low	Low	The thickness of the overlying Oadby Member (at least 17.5m thickness) and its variable permeability and transmissivity suggests that any contaminants in the superficial deposits are unlikely to reach the Principal aquifer in the short term, though it is possible in the long term (moderate risk).
						The proposed works on-site (earthworks may be required – design unconfirmed) may create new pathways within the Oadby Member. This is unlikely to reach the Woburn Sands Formation due to the variable characteristics of the overlying Oadby Member its indicative thickness.

						It is currently unknown if any drainage solutions will be installed along the route, which could impact infiltration into the unsaturated zone. The risk assessment should be updated when new information becomes available.
P6: Surface run-off along roads, pavements, and other surfaces e.g. soil.	R5: Surface water features e.g. drains/small streams.	Mild	Low Likelihood	Low	Low	Small surface water bodies (nearby streams and drains) have been identified close to the site. There is also a relatively low risk of surface water flooding on-site. There is a greater risk of surface water flooding on the eastern side of the Bourn Airfield.
						There is the potential for contaminants to wash into the nearby surface water bodies via surface run-off. An increase in hardstanding on-site is likely to decrease mobilisation of any minor soil contaminants by reducing infiltration. However, there may be increased run off from the hardstanding present on site after construction.
						It is currently unknown if any drainage solutions will be installed along the route, which could impact infiltration into the unsaturated zone and/or the quality of surface water bodies. The risk assessment should be updated when new information becomes available.

On-site

S1: Potentially contaminated artificial ground on-site from historical and current land uses e.g. Bourn Airfield and associated ancillary buildings.

Off-site

S2: Artificial ground and associated contamination from surrounding infrastructure and historical land uses i.e. A428, Bourn Airfield and related works and ancillary buildings.

S3: Vehicles using existing infrastructure may have resulted in fuel/oil spillages and airborne particulates.

S4: Industries within 250m of Zone 1 such as cleaners and engineering materials/manufacturers.

Pathways:

- P1: Human uptake pathways.
- Direct soil and dust ingestion.
- Skin contact with soils and dust. •
- Inhalation of outdoor dust vapours.

P2: Horizontal and vertical migration of any volatile vapours resulting from potential fuel spillages and artificial ground.

P3: Horizontal and vertical migration of contaminants in the unsaturated zone.

P4: Horizontal and vertical migration of contaminants in the saturated zone.

P5: Migration of contaminants along engineered preferential pathways e.g. construction activity, potential drainage systems.

P6: Surface run-off along roads, pavements, and other surfaces e.g. soil.

Approximate ground level: 71 – 72m AOD

© Mott MacDonald

We accept no responsibility for the consequences of this document being relied upon by any other party, or being used for any other purpose, or containing any error or omission in data supplied to us by other parties.

M MOTT MACDONALD	Project: Cambourne to Cambridge Better Public Transport Project (C2C)	Key: Solid Geology – Woburn Sands Formation (not encountered) Solid Geology – Kimmeridge Clay (not encountered) Superficial – Oadby Member (>17.5m thickness – base not proven)	Notes:1. This drawing is for information only.2. This drawing is not for construction.3. This drawing is not to scale.4. The location of features shown is indicative only.
Client:	Greater Cambridge Partnership	Topsoil (0.2 – 0.4m thick) Surface water body	Title: Conceptual Site Model

R3: Groundwater e.g. Oadby Member (Secondary Undifferentiated).

R4: Groundwater e.g. Woburn Sands Formation (Principal) beneath the majority of the Zone i.e. Bourn Airfield (east side of Zone 3). R5: Surface water features e.g. drains/small streams.

Receptors:

R1: Construction workers.

R2: Final end users (i.e. users of the bus route).

Source	Pathway	Receptor	Consequence	Probability	Unmitigated Risk	Mitigated Risk	Comments				
On-site	P1 : Human uptake	R1 : Construction workers.	Medium	Likely	Moderate	Low	Potential contaminants have been identified from various land uses (e.g. surrounding infrastructure and contemporary trade				
ground and associated contamination from past and	pathways. P2: Horizontal and vertical migration of any velotile vancura	R2: Final end users (on-site bus route users, road users).	Medium	Unlikely	Low	Low	 infrastructure and contemporary trade directory entries) but these are considered unlikely to represent gross contamination. The biggest source of concern is the fuel station (currently in operation), located within 				
infrastructure i.e.	resulting from	R3: Final end	Medium	Unlikely	Low	Low	250m of the proposed route(s).				
roads/highways. S2: Vehicles using existing infrastructure may	potential fuel spillages and artificial ground.	users (off-site residential).					The active fuel station may be a potential source for vapours if any leaks or spills have occurred during operation (i.e. underground fuel tanks).				
have resulted in fuel/oil spillages and airborne particulates.							No enclosed spaces are proposed on-site and any gases/vapours are likely to vent directly into the atmosphere. Construction workers are more likely to come into contact with soil and groundwater.				
Off-site S3: Potential contamination from the presence of a fuel station							Some earthworks (e.g. cutting) are proposed in Zone 2 – if materials are to be re-used elsewhere (within Zone 2 or another Zone e.g. for fill/embankments), testing and risk assessments should be completed under a Materials Management Plan.				
i.e. fuel/oil spillages and airborne							A Construction Environmental Management Plan (CEMP) should be implemented prior to construction to ensure that impacts to				

Table G.2: Geoenvironmental Preliminary Risk Assessment – Zone 2

particulates (potential on-site source). S4: Large areas surrounding land							construction workers during development are minimised. As part of the construction and operation of site it is assumed that workers adhere to a site-specific risk assessment and method statement.
are currently designated as agricultural fields so agricultural pesticides and sewage sludge may have been applied to the ground, with localised fuel/oil spillages from agricultural machinery possible.							Final end users (bus route) will not come into contact with soil or groundwater on the site as the site will comprise hardstanding at ground level and site users will be inside vehicles, providing a barrier to any potential contaminants that may be present.
							There are a small number of residential site users to the north of Wellington Way Roundabout. They are not likely to be affected by the current proposed OBC route – if the proposed route changes then the risk assessment should be revised accordingly.
	P3: Horizontal and vertical migration of contaminants in the unsaturated	R4: Groundwater e.g. Oadby Member (Secondary Undifferentiated).	Medium	Low Likelihood	Moderate / Low	Moderate / Low	An increase in hardstanding will reduce the infiltration through any potentially contaminated soils on-site, therefore reducing mobility in the unsaturated zone beneath the route.
	P4: Horizontal and vertical migration of contaminants in the saturated zone.	R5: Groundwater N Horizontal e.g. Woburn vertical Sands Formation ration of (Principal) caminants in beneath the saturated western half of e. Zone 2.	Medium Unlikely	Unlikely	Low	Low	The proposed works on-site are likely to involve earthworks, which could create contamination pathways within the Oadby Member (a Secondary Undifferentiated aquifer). This is unlikely to reach the Woburn Sands Formation due to the variable characteristics of the overlying Oadby Member its indicative thickness
	P5: Migration of contaminants along						If materials are to be re-used elsewhere (within Zone 2 or another Zone) as part of

engineered preferential pathways e.g. construction						the development (e.g. for fill/embankments), testing and risk assessments should be completed under a Materials Management Plan.
activity, potential drainage systems.						It is currently unknown if any drainage solutions will be installed along the route, which could impact infiltration into the unsaturated zone. The risk assessment should be updated when new information becomes available.
P6: Surface runoff along roads, pavements, and other surfaces e.g. soil.	R6: Surface water features e.g. drains.	Mild	Likely	Moderate / Low	Moderate / Low	Drains are present in the western side of Zone 2. There is also a relatively low risk of surface water flooding on the majority of the site. There is a greater risk of surface water flooding on the current road network e.g. Wellington Way.
						There is the potential for contaminants to wash into the nearby surface water bodies via surface run-off. An increase in hardstanding on-site is likely to decrease mobilisation of any minor soil contaminants by reducing infiltration. However, there may be increased run off from the hardstanding present on site after construction.
						It is currently unknown if any drainage solutions will be installed along the route, which could impact infiltration into the unsaturated zone and/or the quality of surface water bodies. The risk assessment should be updated when new information becomes available.

On-site

S1: Artificial ground and associated contamination from past and current infrastructure i.e. roads/highways.

S2: Vehicles using existing infrastructure may have resulted in fuel/oil spillages and airborne particulates.

Off-site

S3: Potential contamination from the presence of a fuel station i.e. fuel/oil spillages and airborne particulates (potential on-site source).

S4: Large areas surrounding land are currently designated as agricultural fields so agricultural pesticides and sewage sludge may have been applied to the ground, with localised fuel/oil spillages from agricultural machinery possible.

Approximate ground level: 71 – 72m AOD

Pathways:

P1: Human uptake pathways.

- Direct soil and dust ingestion.
- Skin contact with soils and dust.
- Inhalation of outdoor dust vapours.

P2: Horizontal and vertical migration of any volatile vapours/ground gas resulting from potential fuel spillages and artificial ground.

P3: Horizontal and vertical migration of contaminants in the unsaturated zone.

P4: Horizontal and vertical migration of contaminants in the saturated zone.

P5: Migration of contaminants along engineered preferential pathways e.g. construction activity, potential drainage systems.

P6: Surface run-off along roads, pavements, and other surfaces e.g. soil.

MOTT MACDONALD	Cambourne to Cambridge Better Public Transport Project (C2C)	 Solid Geology – Woburn Sands Formation (not encountered) Solid Geology – Gault Formation (not encountered) Superficial – Oadby Member (>17.7m thickness – base not proven) 	1. 2. 3. 4.	This drawing is for information only. This drawing is not for construction. This drawing is not to scale. The location of features shown is indicative only.
Client:	Greater Cambridge Partnership	Topsoil (<0.4m thick)		Title: Concentual Site Model -

- R1: Construction workers. R2: Final end users (i.e. bus route users, road users).
- R3: Final end users (residential). R4: Groundwater e.g. Oadby Member (Secondary Undifferentiated).
- R5: Groundwater e.g. Woburn Sands Formation (Principal) beneath the western half of Zone 2. R6: Surface water features e.g. drains and ponds.

Receptors:

Source	Pathway	Receptor	Consequence	Probability	Unmitigated Risk	Mitigated Risk	Comments
On-site	P1 : Human uptake pathways.	R1 : Construction workers.	Medium	Likely	Moderate	Low	Potential contaminants have been identified from various land uses
ground and associated contamination from past and	P2: Horizontal and vertical migration of any volatile vapours resulting from	R2: Final end users (on-site bus route users, road users).	Medium	Unlikely	Low	Low	(e.g. surrounding infrastructure and contemporary trade directory entries) but these are considered unlikely to represent gross contamination.
infrastructure i.e. roads/highways and electrical substation.	potential fuel e i.e. spillages and ays artificial ground. I	spillages and R3 : Final end Medi artificial ground. users (off-site residential).	Medium L	Unlikely	Low	Low	The active fuel station (within 250m of the western side of Zone 3) may be a potential source for vapours if any leaks or spills have
S2: Vehicles using existing infrastructure may have resulted in fuel/oil spillages and airborne particulates.							occurred during operation (i.e. underground fuel tanks). The risk of harm is considered to be low as no enclosed spaces are proposed on-site and any gases/vapours are likely to vent directly into the atmosphere. The Oadby Member also has relatively low permeability
Off-site							that will prevent/slow migration of contaminants.
so. Large areas surrounding land are currently/have previously been designated as agricultural fields so agricultural pesticides and							Construction workers are more likely to come into contact with soil and groundwater. A Construction Environmental Management Plan (CEMP) should be implemented prior to construction to ensure that impacts to construction workers during development are minimised.

Table G.3: Geoenvironmental Preliminary Risk Assessment – Zone 3

	P3: Horizontal and vertical migration of	R4: Groundwater e.g. Oadby Member	Medium	Low Likelihood	Moderate / Low	Moderate / Low	An increase in hardstanding will reduce the infiltration through any potentially contaminated soils on-
stations, fuel station.							Residential site end users in the village of Hardwick (immediately south of the route in Zone 3) are not likely to be affected by the current proposed OBC route – if the proposed route changes then the risk assessment should be revised accordingly.
S4: Industries within 250m of Zone 3 such as printers, agricultural engineers, garages, asphalt contractors, sewage pumping							Final end users (bus route) will not come into contact with soil or groundwater on the site as the site will comprise hardstanding at ground level and site users will be inside vehicles, providing a barrier to any potential contaminants that may be present.
spillages from agricultural machinery possible. Evidence of historical slurry release to nearby waters.							Some earthworks (e.g. cutting) are proposed in Zone 3 – if materials are to be re-used elsewhere (within Zone 3 or another Zone e.g. for fill/embankments), testing and risk assessments should be completed under a Materials Management Plan.
sewage sludge may have been applied to the ground, with localised fuel/oil apilleage from							As part of the construction and operation of site it is assumed that workers adhere to a site-specific risk assessment and method statement.

contaminants in the unsaturated zone.	(Secondary Undifferentiated).				site, therefore reducing mobility in the unsaturated zone beneath the		
P4: Horizontal and vertical migration of contaminants in the saturated zone.	R5: Off-site groundwater e.g. West Melbury Marly Chalk	Medium	Unlikely	Low	Low	route. The proposed works on-site are likely to involve earth works, which could create contamination	
P5: Migration of contaminants along engineered preferential pathways e.g. construction activity, potential drainage systems.	Formation (Principal) to the north-east/east of Zone 3 (OBC alignment underlain by unproductive strata).					pathways within the Oadby Member (a Secondary Undifferentiated aquifer - variable permeability and transmissivity). If materials are to be re-used elsewhere (within Zone 3 or another Zone e.g. for fill/embankments), testing and risk assessments should be completed under a Materials Management Plan.	
					It is currently unknown if any drainage solutions will be installed along the route, which could impact infiltration into the unsaturated zone. The risk assessment should be updated when new information becomes available.		
						The risk to the off-site Principal aquifer is considered to be low due to its significant depth (not encountered, but likely to be >14m), distance from the potential sources, and variable permeability of the overlying Oadby Member.	

P6: Surface run-off along roads, pavements, and other surfaces e.g. soil. drain network.

R6: Surface water Mild features e.g. Callow Brook, balancing ponds,

Likely

Moderate / Moderate Low / Low

Drains are present across the majority of Zone 3. There is also a relatively low risk of surface water flooding on the majority of the site, with some localised areas of increased risk i.e. closer to Callow Brook and the balancing ponds.

There is the potential for contaminants to wash into the nearby surface water bodies via surface run-off. An increase in hardstanding on-site is likely to decrease mobilisation of any minor soil contaminants by reducing infiltration. However, there may be increased run off from the hardstanding present on site after construction.

It is currently unknown if any drainage solutions will be installed along the route, which could impact infiltration into the unsaturated zone and/or the quality of surface water bodies. The risk assessment should be updated when new information becomes available.

On-site

S1: Artificial ground and associated contamination from past and current infrastructure i.e. roads/highways and electrical substation.

S2: Vehicles using existing infrastructure may have resulted in fuel/oil spillages and airborne particulates.

Off-site

S3: Large areas surrounding land are currently/have previously been designated as agricultural fields so agricultural pesticides and sewage sludge may have been applied to the ground, with localised fuel/oil spillages from agricultural machinery possible. Evidence of historical slurry release to nearby waters.

S4: Industries within 250m of Zone 3 such as printers, agricultural engineers, garages, asphalt contractors, sewage pumping stations, fuel station.

Pathways:

- P1: Human uptake pathways.
- Direct soil and dust ingestion.
- Skin contact with soils and dust.
- Inhalation of outdoor dust vapours. •

P2: Horizontal and vertical migration of any volatile vapours resulting from potential fuel spillages and artificial ground.

P3: Horizontal and vertical migration of contaminants in the unsaturated zone.

P4: Horizontal and vertical migration of contaminants in the saturated zone.

P5: Migration of contaminants along engineered preferential pathways e.g. construction activity, potential drainage systems.

P6: Surface run-off along roads, pavements, and other surfaces e.g. soil.

	······································		
N/	Project:	Kev:	Notes:
	Court course to Court sides Detter		1. This drawing is for information only.
M	Cambourne to Cambridge Better	Solid Geology – Gault Formation (not encountered)	2. This drawing is not for construction.
мотт	Public Transport Project (C2C)	Solid Geology – West Melbury Marly Chalk Formation (not encountered)	3. This drawing is not to scale.
MACDONALD		Superficial – Oadby Member (>14.7m thickness – base not proven)	4. The location of features shown is indicative only.
		Topsoil (<0.4m thick)	
Client:	Greater Cambridge Partnership	Surface water body	Title: Conceptual Site Model -

Receptors: R1: Construction workers. R2: Final end users (i.e. bus route users, road users). R3: Final end users (i.e. residential). R4: Groundwater e.g. Oadby Member (Secondary Undifferentiated). **R5:** Off-site groundwater e.g. West Melbury Marly Chalk Formation (Principal) to the north-east/east of Zone 3 (OBC alignment underlain by unproductive strata). R6: Surface water features e.g. Callow Brook, balancing ponds, drain network. Callow Brook A428 St Neots Road Sewage Pumping Station P3, P4 West Melbury Marly Chalk Formation (Principal Aquifer)

	Originated	E Jeffrey	16.03.20
	Checked	J Southall	01.04.20
	Approved	-	
Zo	one 3		

Source	Pathway	Receptor	Consequence	Probability	Unmitigated Risk	Mitigated Risk	Comments
On-site S1: Artificial ground	P1 : Human uptake pathways. P2: Horizontal and vertical migration of any volatile vapours	R1 : Construction workers.	Medium	Low Likelihood	Moderate / Low	Low	There is not anticipated to be a significant source of contamination at
and associated contamination from past and current infrastructure on-site		R2: Final end users (on-site bus route users, road users).	Medium	Unlikely	Low	Low	the site. Potential contaminants have been identified from various land uses (e.g. surrounding infrastructure and contemporary trade directory entries) but these are considered unlikely to
(Ch. 5700 – 6200).	resulting from	R3: Final end	Medium	Unlikely	Low	Low	represent gross contamination.
S2: Vehicles using existing infrastructure may have resulted in fuel/oil spillages and airborne particulates.	potential on/off- site fuel spillages and off-site artificial ground (e.g. potentially infilled land)	users (off-site residential).					The risk of harm is considered to be low as no enclosed spaces are proposed on-site and any gases/vapours are likely to vent directly into the atmosphere.
S3: Large areas surrounding land are currently designated as agricultural fields so agricultural pesticides and sewage sludge may have been applied to the ground, with localised fuel/oil spillages from agricultural machinery possible. Evidence of	innied land).						Construction workers are more likely to come into contact with potentially contaminated soil and groundwater. A Construction Environmental Management Plan (CEMP) should be implemented prior to construction to ensure that impacts to construction workers during development are minimised. As part of the construction and operation of site it is assumed that workers adhere to a site-specific risk assessment and method statement.
historical agricultural							Some earthworks (e.g. cutting) are proposed in Zone 4 – if potentially

Table G.4: Geoenvironmental Preliminary Risk Assessment – Zone 4

pollution to groundwater. <u>Off-site</u>							contaminated materials are to be re- used elsewhere (within Zone 4 or another Zone e.g. for fill/embankments), testing and risk
S4: Artificial ground and associated contamination from past and current							assessments should be completed under a Materials Management Plan. This will likely not be required for areas of agricultural land.
i.e. roads/highways (Ch. 6200 – 8700).							Final end users (bus route) will not come into contact with soil or groundwater on the site as the site
S5: Vehicles using existing infrastructure may have resulted in fuel/oil spillages and airborne particulates.							will comprise hardstanding at ground level and site users will be inside vehicles, providing a barrier to any potential contaminants that may be present.
S6: Industries within 250m of Zone 4 such as printers, garages, electrical goods, industrial equipment suppliers and one record of unspecified works.							Residential site end users in the village of Coton (immediately south of the route in Zone 4) are within 250m of the route but are not likely to be affected by the proposed works – if the proposed route changes then the risk assessment should be revised accordingly.
S7: Historical extractive industries (chalk pit/reservoir) and potentially infilled land within 250m of Zone 4.	 P3: Horizontal and vertical migration of contaminants in the unsaturated zone. P4: Horizontal and vertical 	R4: Groundwater e.g. Oadby Member (Secondary Undifferentiated), which is only present from Ch. 5700 to 76590 (OBC).	Medium	Low Likelihood	Moderate / Low	Moderate / Low	There is not anticipated to be a significant source of contamination at the site. An increase in hardstanding will reduce the infiltration through any potentially contaminated soils on-site, therefore reducing mobility in the unsaturated zone beneath the route.

S8: Electrical substation within 250m of Zone 4.	migration of contaminants in the saturated				The proposed works on-site are likely to involve earth works, which could		
	P5: Migration of contaminants	R5: Groundwater e.g. West Melbury Marly Chalk Formation (Principal).	Severe	Low Likelihood	Moderate	Moderate	create contamination pathways within the Oadby Member (a Secondary Undifferentiated aquifer - variable permeability and transmissivity) and West Melbury Marly Chalk Formation
	preferential pathways e.g. construction activity, potential drainage systems.						(Principal aquifer). If potentially contaminated materials are to be re-used elsewhere (within Zone 4 or another Zone e.g. for fill/embankments), testing and risk assessments should be completed under a Materials Management Plan. This will likely not be required for areas of agricultural land.
							It is currently unknown if any drainage solutions will be installed along the route, which could impact infiltration into the unsaturated zone. As the Chalk Principal aquifer is likely to be present near surface in this zone, the risk assessment should be updated when new information becomes available.
	P6: Surface run- off along roads, pavements, and other surfaces e.g. soil.	R6: Surface water features e.g. Bin Brook and drain network.	Mild	Low Likelihood	Low	Low	Drains are present across the majority of Zone 4. There is generally a low risk of surface water flooding on the majority of the site, with some localised areas of increased risk i.e. closer to the drains that feed into Bin Brook.

There is the potential for contaminants to wash into the nearby surface water bodies via surface runoff due to an increase in hardstanding after construction.

It is currently unknown if any drainage solutions will be installed along the route, which could impact infiltration into the unsaturated zone and/or the quality of surface water bodies. The risk assessment should be updated when new information becomes available.

On-site

S1: Artificial ground and associated contamination from past and current infrastructure on-site i.e. roads/highways (Ch. 5700 - 6200 OBC).

S2: Vehicles using existing infrastructure may have resulted in fuel/oil spillages and airborne particulates.

S3: Large areas of the route are currently designated as agricultural fields so agricultural pesticides and sewage sludge may have been applied to the ground, with localised fuel/oil spillages from agricultural machinery possible. Evidence of historical agricultural pollution to groundwater.

Off-site

S4: Artificial ground and associated contamination from past and current infrastructure off-site i.e. roads/highways (Ch. 6200 - 8700 OBC).

S5: Vehicles using existing infrastructure may have resulted in fuel/oil spillages and airborne particulates.

S6: Industries within 250m of Zone 4 such as printers, garages, electrical goods, industrial equipment suppliers and one record of unspecified works.

S7: Historical extractive industries (chalk pit/reservoir) and potentially infilled land within 250m of Zone 4.

- P1: Human uptake pathways.
- Direct soil and dust ingestion.
- Skin contact with soils and dust.
- Inhalation of outdoor dust vapours.

P2: Horizontal and vertical migration of any volatile vapours and ground gas resulting from potential on/off-site fuel spillages and off-site artificial ground (e.g. potentially infilled land).

P3: Horizontal and vertical migration of contaminants in the unsaturated zone.

P4: Horizontal and vertical migration of contaminants in the saturated zone.

P5: Migration of contaminants along engineered preferential pathways e.g. construction activity, potential drainage systems.

P6: Surface run-off along roads, pavements, and other surfaces e.g. soil.

we accept no responsibility	ve accept no responsibility for the consequences of this document being relied upon by any other party, or being used for any other purpose, or containing any error or ormission in data supplied to us by other parties.						
N/	Project:	Kev:	Notes:				
	Cambourne to Cambridge Better	Solid Geology – Gault Formation (>15.8m thickness)	 This drawing is for information only. This drawing is not for construction. 				
	Public Transport Project (C2C)	Solid Geology – West Melbury Marly Chalk Formation (3.7 – 12.5m	3. This drawing is not to scale.				
MACDONALD		thickness) Superficial – Oadby Member (thickness not reported)	4. The location of features shown is indicative only.				
Client:	Greater Cambridge Partnership	Topsoil (up to 0.3m thick)	Title: Conceptual Site Model				
		Surface water body	1				

(Principal).

© Mott MacDonald

Receptors:

- R1: Construction workers.
- R2: Final end users (on-site bus route users, road users).
- R3: Final end users (off-site residential Coton).
- R4: Groundwater e.g. Oadby Member (Secondary Undifferentiated), which is only present from Ch. 5700 to 76590 (OBC).
- R5: Groundwater e.g. West Melbury Marly Chalk Formation
- R6: Surface water features e.g. Bin Brook and drain network.

Approximate ground level: 52 - 56m AOD

– Zone 4

Source	Pathway	Receptor	Consequence	Probability	Unmitigated Risk	Mitigated Risk	Comments				
<u>On-site</u> S1: Artificial ground	P1 : Human uptake pathways.	R1: Construction workers.	Medium	Low Likelihood	Moderate / Low	Low	Potential contaminants have been identified from various land uses				
and associated contamination from past and current infrastructure i.e.	P2: Horizontal and vertical migration of any volatile vapours	R2: Final end users (on-site bus route users and off-site	Medium	Medium Unlikely Low Low	Low	Low	(e.g. surrounding infrastructure and contemporary trade directory entries) but these are considered unlikely to represent gross contamination.				
(M11/Charles Babbage Road – Ch. 9250 – 9450).	potential on/off- site fuel spillages. P3: Horizontal	commercialy.				The risk of harm is considered to be low as no enclosed spaces are proposed on-site and any vapours are likely to your directly into the					
S2: Vehicles using existing infrastructure	and vertical migration of contaminants within unsaturated and/or saturated zone.						atmosphere.				
may have resulted in fuel/oil spillages and airborne particulates.		contaminants within unsaturated and/or saturated	contaminants within unsaturated and/or saturated	contaminants within unsaturated and/or saturated	contaminants within unsaturated and/or saturated						Construction workers are more likely to come into contact with potentially contaminated soil and
S3: Most of the route (Zone 5) is currently designated as agricultural fields, so agricultural pesticides and sewage sludge may have been applied to the ground, with localised fuel/oil spillages from agricultural machinery							groundwater. A Construction Environmental Management Plan (CEMP) should be implemented prior to construction to ensure that impacts to construction workers during development are minimised. As part of the construction and operation of site it is assumed that workers adhere to a site-specific risk assessment and method statement.				
possible.							Some earthworks (e.g. cutting and embankments) are proposed in				

Table G.5: Geoenvironmental Preliminary Risk Assessment – Zone 5

S4: Potentially contaminated made ground associated with the construction and operation of the British Antarctic Survey and University of Cambridge campus buildings.							Zone 5, particularly in regard to the crossing over the M11. If potentially contaminated materials are to be re- used elsewhere (within Zone 5 or another Zone e.g. for fill/embankments), testing and risk assessments should be completed under a Materials Management Plan. This will likely not be required for areas of agricultural land.
S5: Large areas of surrounding land are currently designated as agricultural fields and allotment gardens, so agricultural pesticides							Final end users (bus route) will not come into contact with soil or groundwater on the site as the site will comprise hardstanding at ground level and site users will be inside vehicles, providing a barrier to any potential contaminants that may be present.
and sewage sludge may have been applied to the ground, with localised fuel/oil spillages from agricultural machinery possible.							Commercial site end users in the east (within 250m) of the route (British Antarctic Survey and University of Cambridge site users) are not likely to be affected by the current proposed OBC route – if the proposed route changes then the
S6: Potentially contaminated made							risk assessment should be revised accordingly.
ground associated with the construction and operation of nearby historical and current	P3: Horizontal and vertical migration of contaminants within unsaturated	R5: Off-site groundwater e.g. West Melbury Marly Chalk Formation (immediately to	Medium	Unlikely	Low	Low	An increase in hardstanding will reduce the infiltration through any potentially contaminated soils on- site, therefore reducing mobility in the unsaturated zone beneath the route.

industrial/commercial activity.	and/or saturated zone. P4: Migration of contaminants	the west of Ch. 8700).					The proposed works on-site are likely to involve earth works, which are unlikely to create any pathways within the underlying Gault Formation (Unproductive Strata).
	preferential pathways e.g. construction activity, potential drainage systems. P5: Surface run- off along roads, pavements, and other surfaces e.g. soil.						The Principal Chalk aquifer is located immediately to the west of Zone 5, making the groundwater vulnerable to any subsurface contamination as a result of
							proposed earthworks and/or surface run-off from Zone 5 (with no superficial deposits present).
							If potentially contaminated materials are to be re-used elsewhere (within Zone 5 or another Zone e.g. for fill/embankments), testing and risk assessments should be completed under a Materials Management Plan. This will likely not be required for areas of agricultural land.
		R6: Surface water features e.g. Bin Brook and drain network.	Mild	Low Likelihood	Low	Low	A significant contamination source has not been identified. Drains surround the majority of Zone 5. There is generally a low risk of surface water flooding on the majority of the site, with some localised areas of increased risk.
							There is the potential for contaminants to wash into the nearby surface water bodies via surface run-off. There may be

increased run off from an increase in hardstanding on site after construction.

It is currently unknown if any drainage solutions will be installed along the route, which could impact infiltration into the unsaturated zone and/or the quality of surface water bodies. The risk assessment should be updated when new information becomes available.

- Inhalation of outdoor dust vapours.

Source	Pathway	Receptor	Consequence	Probability	Unmitigated Risk	Mitigated Risk	Comments
On-site S1: Artificial ground and associated contamination from past and current infrastructure i.e.	P1 : Human uptake pathways.	R1: Construction workers.	Medium	Low Likelihood	Moderate / Low	Low	Potential contaminants have been identified from various land uses
	 P2: Horizontal and vertical migration of any volatile vapours resulting from potential on/offsite fuel spillages. P3: Horizontal and vertical migration of contaminants within unsaturated and/or saturated zone. 	R2: Final end users (on-site bus route users).	Medium	Unlikely	Low	Low	(e.g. surrounding infrastructure and contemporary trade directory entries) but these are considered unlikely to represent gross contamination.
S2: Vehicles using existing on-site infrastructure may have resulted in fuel/cill spillages and		R3: Final end users (off-site commercial/reside ntial/recreational).	Medium	Unlikely	Low	Low	The risk of harm is considered to be low as no new enclosed spaces are proposed on-site and any vapours are likely to vent directly into the atmosphere.
airborne particulates. S3: Ch. 10150 – 10550 are currently designated as agricultural fields, so agricultural pesticides and sewage sludge may have been applied to the ground, with localised fuel/oil spillages from agricultural machinery possible.							Construction workers are more likely to come into contact with potentially contaminated soil and groundwater. A Construction Environmental Management Plan (CEMP) should be implemented prior to construction to ensure that impacts to construction workers during development are minimised. As part of the construction and operation of site it is assumed that workers adhere to a site-specific risk assessment and method statement. Final end users (bus route) will not
spillages from agricultural machinery possible.							Final end users (bus route) will no come into contact with soil or

Table G.6: Geoenvironmental Preliminary Risk Assessment – Zone 6

Off-site S4: Artificial ground and associated contamination from past and current							groundwater on the site as the site will comprise hardstanding at ground level and site users will be inside vehicles, providing a barrier to any potential contaminants that may be present.
infrastructure i.e. roads/highways (M11).							Commercial, residential and recreational site end users are
S5: Vehicles using existing off-site infrastructure may have resulted in fuel/oil spillages and airborne							are not likely to be affected by the works, which will consist of hardstanding cover. If the proposed route changes then the risk assessment should be revised accordingly.
particulates. S6: Large areas of surrounding land are currently designated as agricultural fields, so agricultural pesticides and sewage sludge may have been applied to the ground, with localised fuel/oil spillages from	P3: Horizontal and vertical migration of contaminants within unsaturated and/or saturated	R4: Surface water features e.g. Bin Brook, ponds, canal and land drains.	Mild	Low Likelihood	Low	Low	Hardstanding on-site will reduce the infiltration through any potentially contaminated soils on- site, therefore reducing mobility in the unsaturated zone beneath the route.
	zone. P4: Migration of contaminants along engineered preferential pathways e.g.	R5: Flora and fauna e.g. bird sanctuary (north of Ch. 11100).	Mild	Unlikely	Very Low	Very Low	The proposed works on-site (no significant earthworks) are unlikely to create any pathways within the Gault Formation as it is designated as Unproductive Strata.
agricultural machinery possible. S7: Potentially	construction activity, potential drainage systems.						It is currently unknown if any drainage solutions will be installed along the route, which could
contaminated made ground associated	P5: Surface run- off along roads,						impact the nearby surface water bodies. The risk assessment

with the	pavements, and	should be updated when new
construction and	other surfaces	information becomes available.
operation of University of Cambridge campus buildings, as well as nearby historical and current industrial/commerci al activity.	e.g. soil.	Drains/streams/canals surround the majority of Zone 6. There is generally a low risk of surface water flooding on the majority of the site, with some localised areas of increased risk. There may be increased run off from the minor additional hardstanding present on-site after construction.

On-site

S1: Artificial ground and associated contamination from past and current infrastructure i.e. roads/highways.

S2: Vehicles using existing on-site infrastructure may have resulted in fuel/oil spillages and airborne particulates.

S3: Ch. 10150 - 10550 are currently designated as agricultural fields, so agricultural pesticides and sewage sludge may have been applied to the ground, with localised fuel/oil spillages from agricultural machinery possible.

Off-site

S4: Artificial ground and associated contamination from past and current infrastructure i.e. roads/highways (M11).

S5: Vehicles using existing off-site infrastructure may have resulted in fuel/oil spillages and airborne particulates.

S6: Large areas of surrounding land are currently designated as agricultural fields, so agricultural pesticides and sewage sludge may have been applied to the ground, with localised fuel/oil spillages from agricultural machinery possible.

S7: Potentially contaminated made ground associated with the construction and operation of University of Cambridge campus buildings, as well as nearby historical and current industrial/commercial activity.

- Direct soil and dust ingestion.
- Skin contact with soils and dust.
- Inhalation of outdoor dust vapours.

P1: Human uptake pathways.

P2: Horizontal and vertical migration of any volatile vapours resulting from potential on/off-site fuel spillages.

P3: Horizontal and vertical migration of contaminants within unsaturated and/or saturated zone.

P4: Migration of contaminants along engineered preferential pathways e.g. construction activity, potential drainage systems.

P5: Surface run-off along roads, pavements, and other surfaces e.g. soil.

Receptors:

drains

- R1: Construction workers
- R2: Final end users (on-site bus route users).
- R3: Final end users (off-site commercial/residential/recreational).
- R4: Surface water features e.g. Bin Brook, ponds, canal and land

R5: Flora and fauna e.g. bird sanctuary (north of Ch. 11100).

Approximate ground level: 9.4m AOD (east)

	Originated	E Jeffrey	24.03.20		
	Checked	J Southall	01.04.20		
	Approved	-			
Zo	one 6				

Source	Pathway	Receptor	Consequence	Probability	Unmitigated Risk	Mitigated Risk	Comments
<u>On-site:</u> S1: Potential	P1 : Human uptake	R1: Construction workers	Mild	Low Likelihood	Low	Low	No significant contamination source has been identified from the desk study.
contamination from current and historical land use as agricultural land e.g.	pathways P2 : Horizontal and vertical migration of any	R2: Final end users	Medium	Unlikely	Low	Low	Potential contaminants (related to agricultural practices on-site and off-site infrastructure) have been identified but are considered unlikely to represent gross contamination.
pesticides, sewage sludge and the potential for localised fuel/oil spillages from agricultural machinery.	vapours/ground gas resulting from potential on/off-site fuel spillages and off-site artificial ground.						Construction workers are more likely to come into contact with soil and groundwater. A Construction Environmental Management Plan (CEMP) should be implemented prior to construction to ensure that impacts to construction workers during
Off-site: S2: Artificial Ground and associated contamination from							development are minimised. As part of the construction and operation of site it is assumed that workers adhere to a site-specific risk assessment and method statement.
surrounding infrastructure i.e. Scotland Road and A428.							No significant ground gas/ vapour source has been identified on site. Proposed works are unlikely to create any new pathways for exposure. No
S3: Vehicles using existing infrastructure may have resulted in fuel/oil spillages and airborne particulates.							enclosed spaces are proposed on-site. Final end users will not come into contact with soil or groundwater on the park and Ride site as the site will likely comprise hardstanding at ground level,

Table G.7: Geoenvironmental Preliminary Risk Assessment – Zone 7

S4: Numerous surrounding industries within 250m of Zone 7 such as electricity generation, manufacturers, cleaners, launderettes, printers, engineers and garages/vehicle services.							providing a barrier to any potential minor contaminants that may be present.
	P3 : Horizontal and vertical migration of contaminants in the unsaturated zone.	R3: Groundwater e.g. Oadby Member (Secondary Undifferentiated).	Medium	Unlikely	Low	Low	No significant contamination source has been identified. An increase in hardstanding will reduce the infiltration through any potentially contaminated soils, therefore reducing mobility in the unsaturated zone.
	P4 : Horizontal and vertical migration of contaminants in the saturated zone.						The proposed works on-site (no significant earth works) are unlikely to create any new pathways within the Oadby Member (a Secondary Undifferentiated aquifer - variable permeability and transmissivity).
	P5: Migration of contaminants along engineered preferential pathways e.g. construction activity, Park and Ride drainage system (design dependant) and existing land drains.						The proposed drainage solution on the site (surface run-off collection and discharge into Callow Brook) will mitigate infiltration of contaminated surface run-off and reduce the mobilisation of contaminants in the unsaturated and saturated zones. Full drainage design to be confirmed and risk assessment to be updated accordingly.
	P6 : Surface runoff along roads, pavements, and other surfaces e.g. soil, Park and Ride drainage.	R4: Surface water features e.g. Callow Brook and land drains.	Mild Low Low Likelihood	Low	Surface water bodies (Callow Brook – stream, and artificial land drains) have been identified in close proximity to the site, which show a low risk for surface water flooding.		
--	--	--	----------------------------	-----	---		
		nd Ride rainage.					

Sources:

On-site

S1: Potential contamination from current and historical land use as agricultural land e.g. agricultural pesticides, sewage sludge and the potential for localised fuel/oil spillages from agricultural machinery.

Off-site

S2: Artificial ground and associated contamination from surrounding infrastructure i.e. Scotland Road and A428.

S3: Vehicles using existing infrastructure may have resulted in fuel/oil spillages and airborne particulates.

S4: Numerous surrounding industries within 250m of Zone 7 such as electricity generation, manufacturers, cleaners, launderettes, printers, engineers and garages/vehicle services.

Pathways:

P1: Human uptake pathways.

- Direct soil and dust ingestion.
- · Skin contact with soils and dust.
- Inhalation of outdoor dust vapours.

P2: Horizontal and vertical migration of any volatile vapours/ground gas resulting from potential on/off-site fuel spillages and off-site artificial ground.

P3: Horizontal and vertical migration of contaminants in the unsaturated zone.

P4: Horizontal and vertical migration of contaminants in the saturated zone.

P5: Migration of contaminants along engineered preferential pathways e.g. construction activity, Park and Ride drainage system (design dependant) and existing land drains.

P6: Surface run-off along roads, pavements, and other surfaces e.g. soil, Park and Ride drainage.

© Mott MacDonald

This document is issued for the party which commissioned it and for specific purposes connected with the captioned project only. It should not be relied upon by any other party or used for any other purpose. We accept no responsibility for the consequences of this document being relied upon by any other party, or being used for any other purpose, or containing any error or omission in data supplied to us by other parties. Notes: Project: Key: Μ This drawing is for information only. 1. Cambourne to Cambridge Better Solid Geology - Gault Formation (not encountered) 2. This drawing is not for construction. M Public Transport Project (C2C) Superficial Deposits – Oadby Member (>20m thickness – base not proven) 3. This drawing is not to scale. MOTT MACDONALD 4. The location of features shown is indicative only. Topsoil (0.15 – 0.5m thick) Surface water body Client: Greater Cambridge Partnership Title: Conceptual Site Model -

- **R3:** Groundwater e.g. Oadby Member (Secondary Undifferentiated).

Receptors:

- R1: Construction workers.
- R2: Final end users (i.e. users of the Park and Ride).
- R4: Surface water features e.g. Callow Brook and land drains.

	Originated	E Jeffrey	05.03.20
	Checked	J Southall	10.03.20
	Approved	-	
Scotland Road Park and Ride (Zone 7)			

Source	Pathway	Receptor	Consequence	Probability	Unmitigated Risk	Mitigated Risk	Comments
<u>On-site</u> S1: Artificial ground and associated contamination from past and	P1: Human uptake pathways. P2: Horizontal and vertical migration of any volatile vapours resulting from potential fuel spillages and artificial ground (e.g. infilled land/extractive industries).	R1 : Construction workers.	Medium	Likely	Moderate	Low	No significant contaminant sources have been identified at the site. Potential contaminants have
		R2: Final end users (i.e. bus route users, road users).	Medium	Unlikely	Low	Low	been identified from various land uses (e.g. surrounding infrastructure and contemporary trade directory entries) but these are considered unlikely to represent gross contamination.
current infrastructure i.e. roads/highways.		R3 : Final end users (residential).	Medium	Unlikely	Low	Low	Construction workers are more likely to come into contact with soil and groundwater. A Construction Environmental Management Plan (CEMP) should be implemented prior to construction to ensure that
S2: Vehicles using existing infrastructure may have resulted in fuel/oil spillages and airborne particulates.						impacts to construction workers during development are minimised. As part of the construction and operation of site it is assumed that workers adhere to a site-specific risk assessment and method statement.	
							Some potentially filled land and extractive industries have been identified within 250m of the route, where the presence/content of potential infill material (although they are now labelled as ponds) is not
<u>Off-site</u>							known.
S3: Large areas surrounding land are currently designated as agricultural fields so							The risk of harm is considered to be low as no enclosed spaces are proposed on-site and any gases/vapours are likely to vent directly into the atmosphere. The Oadby Member also has relatively low permeability that will prevent/slow migration of contaminants.
agricultural pesticides and							Final end users (bus route) and residential site users are unlikely to come into contact with soil or

Table G.8: Geoenvironmental Preliminary Risk Assessment – Zone 8

sewage sludge may have been applied to the ground, with							groundwater on the site as the site will comprise hardstanding at ground level and site users will be inside vehicles, providing a barrier to any potential contaminants that may be present.
localised fuel/oil spillages from agricultural machinery possible. S4: Industries within 250m of Zone 8 such as printers, cleaning services, electronic equipment, chemical product distribution,	Indeviou from alP3: Horizontal and vertical migration of contaminants in the unsaturated zone.Um of uch asP4: Horizontal and vertical migration of contaminants in the saturated zone.P4: Horizontal and vertical migration of contaminants in the saturated zone.n, n, n, n, titally ad andP5: Migration of contaminants along engineered preferential pathways e.g. construction activity, potential drainage systems.	R4: Groundwater e.g. Oadby Member (Secondary Undifferentiated).	Medium	Unlikely	Low	Low	No significant contaminant sources have been identified at the site. An increase in hardstanding will reduce the infiltration through any potentially contaminated soils on-site, therefore reducing mobility in the unsaturated zone beneath the route.
		R5: Off-site groundwater e.g. West Melbury Marly Chalk Formation (Principal) c. 200m east of Zone 8 (OBC alignment underlain by	Medium	Unlikely	Low	Low	It is currently unknown if any drainage solutions will be installed along the route, which could impact infiltration into the unsaturated zone. The risk assessment should be updated when new information becomes available.
				Despite Seconda is consid superfici of Zone	Despite its variable characteristics, the risk to the Secondary Undifferentiated aquifer (Oadby Member) is considered to be low due to the thinning of the superficial deposits to the north, north west and east of Zone 8.		
substation. S5: Potentially infilled land and historical extractive industries within 250m of Zone 8.		strata)					The risk to the off-site Principal aquifer is also considered to be low due a lack of significant source and the variable characteristics of the overlying Oadby Member. The overlying superficial deposits are much thinner in Zone 8 than the western zones of the scheme, increasing the potential for contaminants to reach the bedrock in the long term (if present).
	P6: Surface run-off along	R6: Surface water features	Mild	Low Likelihood	Low	Low	Drains are present across the majority of Zone 8. There is also a relatively low risk of surface water

	roads, pavements, and other	e.g. Callow Brook, balancing ponds, drain	flooding on the majority of the site, with some localised areas of increased risk which correlate to the land drain network and Callow Brook.
s	surfaces e.g. soil.	network.	There is the potential for contaminants to wash into the nearby surface water bodies via surface run-off.
			It is currently unknown if any drainage solutions will be installed along the route, which could impact infiltration into the unsaturated zone and/or the quality of surface water bodies. The risk assessment should be updated when new information becomes available.

	Project:	Kev:	Notes:
			1. This drawing is for information only.
Г. NЛ	Cambourne to Cambridge Better	Solid Geology – Gault Formation (21m thickness)	2. This drawing is not for construction.
	Public Transport Project (C2C)	Solid Geology – West Melbury Marly Formation (not encountered)	3. This drawing is not to scale.
MACDONALD			4. The location of features shown is indicative only.
		Superficial – Oadby Member (7.62m thickness – including made ground)	
Client:	Creater Combridge Dertherabin	Topsoil (thickness not reported)	Title: Conceptual Site Madel
	Greater Cambridge Partnership	Surface water body	I The. Conceptual Site Model -

- Zone 8

H. Contaminated Land Risk Methodology

The following Contaminated Land Risk Assessment methodology is based on CIRIA C552 (2001) Contaminated Land Risk Assessment – A Guide to Good Practice, in order to quantify potential risk via risk estimation and risk evaluation, which can be adopted at the Phase I (Desk Study) stage. This will then determine an overall risk category which can be used to identify potential investigation or remedial actions. This methodology uses qualitative descriptors and therefore is a qualitative approach based on desk information. The risk assessment should be refined following receipt of ground investigation data. The methodology requires the classification of:

- the magnitude of the consequence (severity) of a risk occurring, and
- the magnitude of the probability (likelihood) of a risk occurring.

The potential consequences of contamination risks occurring at this Site are classified in accordance with Table H.1 below, which is adapted from the CIRIA guidance.

Classification	Definition of Consequence
Severe	Short-term (acute) risks to human health likely to result in "significant harm" as defined by the Environmental Protection Act 1990, part IIA. Short-term risk of pollution of sensitive water resource. Catastrophic damage to buildings/property.
	A short-term risk to a particular ecosystem, or organism forming part of such an ecosystem.
Medium	Chronic damage to Human Health (significant harm as defined in DEFRA, 2012). Pollution of sensitive water resources. A significant change in a particular ecosystem, or organism forming part of such an ecosystem.
Mild	Pollution of non-sensitive water resources. Significant damage to crops, buildings, structures, and services ("significant harm" as defined in the DEFRA, 2012). Damage to sensitive buildings/structures/services or the environment.
Minor	 Harm, though not necessarily significant harm, which may result in a financial loss, or expenditure to resolve. Non-permanent health effects to human health (easily prevented by means such as personal protective clothing etc.). Easily repairable effects of damage to buildings, structures, and services.

Table H.1: Classification of Consequence

Source: CIRIA C552

The probability of contamination risks occurring at this site will be classified in accordance with Table H.2 below from the CIRIA guidance. Note: A pollution linkage must first be established before probability is classified. If there is no pollution linkage, then there is no

potential risk. If there is no pollution linkage, then there is no need to apply tests for probability and consequence.

Table H.2: Classification of Probability

Classification	Definition of Probability
High Likelihood	There is pollutant linkage and an event would appear very likely in the short-term and almost inevitable over the long-term, or there is evidence at the receptor of harm or pollution.
Likely	There is pollutant linkage and all the elements are present and in the right place which means that it is probable that an event will occur. Circumstances are such that an event is not inevitable, but possible in the short-term and likely over the long-term.
Low Likelihood	There is pollutant linkage and circumstances are possible under which an event could occur. However, it is by no means certain that even over a long period such an event would take place and is less likely in the shorter term.
Unlikely	There is pollutant linkage, but circumstances are such that it is improbable that an event would occur even in the very long-term.

R&D 66:2008 presents definitions of the risk categories, together with the investigatory and remedial actions that are likely to be necessary in each case. These definitions are reproduced in Table H.4, with the probability/consequence matrix presented in Table H.3. These risk categories apply to each pollutant linkage, not simply to each hazard or receptor.

Table H.3: Overall Contamination Risk Matrix

			Consequence				
		Severe	Medium	Mild	Minor		
	High likelihood	Very high risk	High risk	Moderate risk	Low risk		
bility	Likely	High risk	Moderate risk	Moderate / Low risk	Low risk		
Proba	Low likelihood	Moderate risk	Moderate / Low risk	Low risk	Very low risk		
	Unlikely	Moderate / Low risk	Low risk	Very low risk	Very low risk		

Based upon this, CIRIA C552 presents definitions of the risk categories, together with the investigatory and remedial actions that are likely to be necessary in each case, as in Table H.4. These risk categories apply to each pollutant linkage, not simply to each hazard or receptor.

Risk Category	Definition and Likely Actions Required
Very High	There is a high probability that severe harm could arise to a designated receptor from an identified hazard, OR, there is evidence that severe harm to a designated receptor is currently happening. This risk, if realised, is likely to result in a substantial liability. Urgent investigation (if not already undertaken) and remediation are likely to be required.
High	Harm is likely to arise to a designated receptor from an identified hazard. Realisation of the risk is likely to present a substantial liability. Urgent investigation (if not undertaken already) is required and remedial works may be necessary in the short term and are likely over the longer term.
Moderate	It is possible that harm could arise to a designated receptor from an identified hazard. However, it is relatively unlikely that any such harm would be severe, or if any harm were to occur it is more likely that the harm would be relatively mild. Investigation (if not already undertaken is normally required to clarify the risk and to determine the potential liability. Some remedial works may be required in the long term.
Low	It is possible that harm could arise to a designated receptor from an identified hazard, but it is likely that this harm, if realised would at worst be relatively mild.
Very Low	There is a low possibility that harm could arise to a receptor. In the event of such harm being realised it is not likely to be severe.

Table H.4: Definitions of Risk Categories and Likely Actions Required

I. Limitations

This document has been prepared for the titled project or named part thereof and should not be relied upon or used for any other project without an independent check being carried out as to its suitability and prior written authority of MML being obtained. MML accepts no responsibility or liability for the consequences of this document being used for a purpose other than the purpose for which it was commissioned. Any person using or relying on the document for such other purposes agrees, and will by such use or reliance to be taken to confirm his agreement to indemnify MML for all loss or damage resulting there from. MML accepts no responsibility or liability for this document to any party other than the person by whom it was commissioned.

To the extent that this document is based on information supplied by other parties, MML accepts no liability for any loss or damage suffered by the Client stemming from any conclusions based on data supplied by parties other than MML and used by MML in preparing this report.

The findings and opinions of this report are based on information obtained from a variety of sources as detailed in this report, and which MML believes is reliable. Nevertheless, MML cannot and does not guarantee the authenticity or reliability of the information it has relied on from others. To the extent that this document is based on information obtained from a ground investigation, persons using or relying on it should recognise that any such investigation can examine only a fraction of the subsurface conditions. Where MML has been responsible for the design of a ground investigation, it has used reasonable skill and care. However, in any ground investigation there remains a risk that pockets or "hot-spots" of contamination may not be identified, because investigations are necessarily based on sampling at localised points. Certain indicators or evidence of hazardous substances or conditions may have been outside the portion of the subsurface investigated or monitored and thus may not have been identified or their full significance appreciated.

It is also possible that environmental monitoring has not identified certain conditions because of the relatively short monitoring period. Accordingly, it is possible that the ground investigation and monitoring failed to indicate the presence or significance of hazardous substances or conditions. If so, their presence could not have been considered in the formulation of MML's findings and opinions.

mottmac.com

62-64 Hills Road Cambridge CB2 1LA

wsp.com